Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 99eeee5a5daf3a56a1f573d3398cc444fd2c434e0f2a51d263eff48f7d054c8b
MD5 3b3e30b4a687479f8c88d12730541009
BLAKE2b-256 13c8ccc1f2e580a8074731f4456986fd9da9bfdcee3f8515e123f077da304fc7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5636046d20b14cd57b4b52967e4dc8d3273c11b22eb5de6628f551ac3cb7e092
MD5 467781553e0c6a36272bee47bcaf76f3
BLAKE2b-256 6ce3d41f4a3f1f3e82217279dadcb6dcd141a7217fa3becbe7eb8aa62bca7c83

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6f56e8b7aaa56b8e88a726cf147dc75a77b6811ebbd9ac60c37ec8061815ae5b
MD5 847393b06256f70d4464f2947e22fd57
BLAKE2b-256 f461381f91f088704ee145e0c54c7b2f29800882cc44e9b3a10883faf4a09fd5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 75675dddfe147a22af0322afec9a22553691a9f8b03f0add0823b3d250b43786
MD5 cd6ef4da4fc9197198c4404b937a38fd
BLAKE2b-256 6e0953247f23ac23239af7cbaa1636c685e7f9011cba9943a34774a82af4b6c8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4e7a92fa730c3249d3b56a0b43aa744b68e16410c17b54ef3cf5a03f7b43bd82
MD5 a9c9ed8767a2b2b373e689fc456cb42d
BLAKE2b-256 e08e5fa7aec990c7ada3340e52d31259f109949a8f65dcc77d3ae4473555f756

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 564af9b94ec7aaef333ab881094287919ef9e7e467a80dca1ac0bf0a31ef20bc
MD5 59983c71baeee1b66f68cb28fc17a43c
BLAKE2b-256 0e691fcc24ae68f06f28b5ffe90a84ffb946b40189ea4987b6db809e3d727087

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e207d63655e1e62ecd645e87488edef53f93b060be625965a1f637ee2ce9417f
MD5 8c59056ada8443eeffa26b5d704a8815
BLAKE2b-256 62f16a5f5259902cfc3ffff10d02645e58d734aaa2d215afbed6e6fc823c102b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7533c3ca952f78f6ff0f6a5ab2f6f2fc35ce5bbc4706d17f1b06ccabb464f35d
MD5 747918d58a5756225b145c7237cd97cd
BLAKE2b-256 4561d31c2dc2aaeddab313dbc68504b1bce8c3f22f273c3b95e2f0fde1e517aa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 61a94e3e0dc6322c8048eea48d27c0b8e9ebb15bdd904d7eeb7e96b41f2ab478
MD5 91a9da25ab08df5ce3b8363956c8ca3d
BLAKE2b-256 5e5573cacda6ce2c6ab08dd420300c994793bbac12664d2d8d1ec580918e63e0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3dd1e373997fca760806921c308483238d81b134652c4ad36b90da731b5196db
MD5 8660328b0a63331318b034530461ac6a
BLAKE2b-256 896fed208013df9b21e4582efeb392b9f1f0ce155c856300579cc79f2db1022e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 20c3c0219255065972e31cd66280e24fcfd43e29a4d3393f4534fcfb4db0a169
MD5 8a5d3a0fd8445a82db857d40ca84f2b8
BLAKE2b-256 1909968f2601cb3e8a7033e1a7cdf9ca8bf2bae1fb72d5f58b7fb41aa9b2001f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519192421-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 48c913b3225f26edf2316447897428663801a8881807fdeeddd602b411203403
MD5 b799ce5bf0178bdf735c5739c82f3652
BLAKE2b-256 1f8b26c3eb99befd765a2834c0072f2c452ad2960d566d00a1f65d0578fa853d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page