Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 022a0e751d97b0842cc4110cc89fc25d694b8ee59e4443445b131154d2ba2017
MD5 df851d602ee7c0450b774d399d6881c5
BLAKE2b-256 2dc540c01780e736309f3b05b7cfd1b6ffd280d761cac4142f526a1856e1c9dd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 80f734f7520c26527a95fc6b96a2bb6d957a5d321a379793e1ef53b0f6f06904
MD5 abfe4c155079c76bf4cfc5b0c1ae8f20
BLAKE2b-256 9b1fc2c07b911f6329e6b31dc8a2dbbe45143947fde9de996dd70265fda6378d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f1d15e7a7ee657d180626747e3d9a22c7da3e7812ad3e306165b9e63437827b6
MD5 7adfebef61a4f92e426639d19097518a
BLAKE2b-256 e315ca1faf60813a1bbe4fefb7769b0c487a3e2a3c6bb5157c5b1236bb4efa63

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 57a5727191b935a5645a0eea316226befd82a8c24bdf7ffacde9ac9274717962
MD5 81fcc922691dc763164d20fe07d7bc6f
BLAKE2b-256 956cc24276e031ae8772d2b39e0c4c9f999f686dcbfd8aac2b214aa2282a21df

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 de1562893202153e5c227cd373ea2534bcaacc83343215698d612d075003c484
MD5 bad2eee8700716e70c37f5bc4c4e4252
BLAKE2b-256 e547c119f4c070e6748d30b8fab224aa89d55a25896f62f2ecf136a5aa68e567

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8f67e9894803ef119cb52c6ea6820c8a98c288c03a1030c3f78572290c5b5989
MD5 80c0a99843bec42e7ccadacc630ff2ac
BLAKE2b-256 280709829eefa53810a9d04d0e68a92c20311ed48b97fe5501426b72be4257a5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f035f156823ea2159efeb99cec328c4f176fb3ea5f3f2546f4aff86f305226d6
MD5 ad6917ff78734014c1cc0625c24395e1
BLAKE2b-256 8d21e0ea984caf44bc65892deeaefed6990c22d2090a9c51f1858ba851f3483c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c53a7af7310c931a058291b3f897da18012b24c3ba9fa44630754386b6b66b57
MD5 f520ae844b3e25de18cb60efa5908ed5
BLAKE2b-256 473da2dfab4c952a890b04b4b786080700d1c53ecb08109960b195856788405d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c832199fa96e799b074e29bfa4a4c16694f9b1428e3a13f1fb133e2742459030
MD5 f8d143fe583e85f61400c801eb7894ea
BLAKE2b-256 6424638b53a993e7fe64b1e2fe360335d71576d0a5eff5ce1a68e5bc7206d379

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ee89187bb1f14b387c2d03dc0c7f3326136827cf90f5c8e6d612734a8c27ae2c
MD5 43fc7abcd98529fd1af88e5a0b9c2320
BLAKE2b-256 1bc6538980a5771cf22d06c119d3457c8827de4d8a0adf5f6e967d8b93cc327c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5f2211d36419d38860acc6d61582e735a4776497ff4fcbdddb960b45ef619268
MD5 b82ab0252658ff30652561dcc7079359
BLAKE2b-256 7f0cd9112257a6ad91dc30dd8ede1ec1e1157de9416d759e384bed6cf875f565

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519200847-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f97d199f293e17bac6930776917843c1d37b40cb9ac4246ef969aaba8ca715c2
MD5 f4e9ae4abd25662c9eaf174825a9a957
BLAKE2b-256 fe75f8065a60d9a1d8213a281c0465d5c9f1c721191343f00b2c57f0725cab21

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page