Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 464eaa652904e876ade9217f4825212a6b857ccb0d7b6d3afe2afa3e8ba4bbb9
MD5 5acf2f522c840f4ad495b24e7b3b9d9b
BLAKE2b-256 4170bed283a021b5e70669b678aae454dc18bb09c3b11533483e860d87f9ea80

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a27944ce32060e65a707d0fa5cc60b3db51b522f692b785bbc61ba19b6129a9d
MD5 b10c50072edc6f022fa4953e52e80b99
BLAKE2b-256 321713130a68c9405b623886e172e37739991c4d4277d5c5eb0f8e429051f73b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e69ad64fb081e6c0f3cc7653677e3f62c0fcffe73e92dc77df92b012c2a82de1
MD5 478f646c853527de2b1aeb6b44ba34a2
BLAKE2b-256 06f927fbc041849a1fe414bb5a4ce1cde5557657786590b680d2455688b85c53

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 25be2730016a6ad16a5e0c58f825fea813a2f5b4ffa4a1c9a903d4aeaefba1be
MD5 c5405442e4bf9fa3f657947cf11d242a
BLAKE2b-256 d95711b4301cf9c8af072f085b479e39aa53250f5aebc3b9d894d18183c31fae

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bbabddd901f13bb4ab71abf1a0a1e14dd089385efe2d6cbe924038d2899b947a
MD5 f76c7b0ee5f7cb332a98f4158fe9c47d
BLAKE2b-256 c8644eb9145cf264c201ce07b178140d6b7896a66d4151917ec2f87e0840e916

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0a2053c9c3db3971127eefe9143ecbb74cd2c4146ebda65101dd4eea65fc4880
MD5 aa13c7db377ac570824ab3f85a81afba
BLAKE2b-256 a5fdd7ef822ebf7ffa7c4d2fc96a82f5f65d6c7548298575b038383b6d77905c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 33769bc9f8d5e1b4a13447a515479aa7c098f9a0152e2fd1caae8847a8af1bac
MD5 e5344d08336565e8ae05f8e3af1b3c28
BLAKE2b-256 1d631d2b5dac545f5c1a88023dcfaeb1622f15aeb57a83ef5320136208f2f1b6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7346f21aa532ca7bf385567b9620b4c486f55296399de8d679362137186f274f
MD5 597d57deafaadf7eff51fdbecf9a9bf8
BLAKE2b-256 1865dd3f56a132c44eb16465fdc8a37e8371dfba4352b18bffc90b89d801a48d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d7204245b4acf630d1158623bae6a539e0b8dd70cfc5a142eb9a065272622ffe
MD5 d96b23b0de79c4af7d9a3a0b6395a637
BLAKE2b-256 19616a9314440f80bb872b26547fdb1ef067a656fddaaa8cc349bd78b008ce06

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 654a5a36a9cd7e07304f1aee7e99a2d4c7ea657f9ab96af0791aed6a37f4ae66
MD5 abce20452c30b6bbb9102b2ea0deeaa1
BLAKE2b-256 38084053a464a06cd424d0b1150de34748a55bf2be868d83c176ea85edcb2d7a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 717ad9b913fa886cb743d43898b9f743a53b4d4ee24e1f057180e496cc92e65b
MD5 36cefe0f33ae6dbfe543c1c8fdc543fe
BLAKE2b-256 3a06cf6a7190b9c23821fa8f10c823a48b774a83dbd892e5197d442d39211c95

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210520161933-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 501696f7a3540b62cb8f2e6b5280a33b4f8d48c519a4c8ac12022b1d4b35c5d9
MD5 c6bb1f70ba5f2dc1f82c55024447378c
BLAKE2b-256 42288ed0b10ad035007b44fa7c163348b89fc9e9e19343bab2817d1fb24835ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page