Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 be093c084ddc0d390bba5b2700afe8cce9c4aa1bf08f0fc1fb91de12bbe52133
MD5 7fcf77b013327f6421fcbf265f654906
BLAKE2b-256 e2b934f82ade3cbc0a3c8fc395669a6571f4c6adfa72a023edbaafad696b7962

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 81b330831b0d500f1fba9595c4aefd5b44d1dc7b774c2b1907f8c4213ddbc1d8
MD5 a11eec8213bdbc83f97e988c65f0009a
BLAKE2b-256 adb6e82141b7088090c41faac0db8e6566ef970b6d867f34d20f71a849e2a5db

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 570b6a358a04fd38ae769aa430c3abbe3f3a22b38a6b336691246325d02a2eb4
MD5 4ed598978fc9c3de7c9b7ab7e0b378a1
BLAKE2b-256 076c4f60548136fa8bef8eedbdb59816750a160a3511ac6b3c4482e0e3b3a5c6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 059b80a01c482919b09c3d56d3eac686dc8182e30724fcbfcf6d5c977ab84d47
MD5 58ca76cc3ec20634d81e08124d8e0544
BLAKE2b-256 c0ba6154ebb05e515e52441324b039c072d4cc2adeb3a28fecb930fad8240c68

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9c0ad5e3afc57fa2b997374ad8605a28bc056f4449eca8b60de59978bac41376
MD5 774f4ae05178a36a16482f08bce96c45
BLAKE2b-256 85b2024d39ba814de0639fec5c62d0640b6cf04f102e6162621a4c9d542cce91

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3155cd3399414c0a79532cd845483a0216ac8b78229185ad8eac3a7a092bc421
MD5 f9092843eb2114d461bd80c5f4c92f0e
BLAKE2b-256 0f0cefbe6d61a2e87d3db9f4c703ba1acbb29202bba06478f3c9de5caaf2a6c8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3c521152671ae4de9b7de044743a91d1cec1f06455a83defb44a7b7bfa68286f
MD5 b9a9534f89cf71221aee5cd4e3d4896f
BLAKE2b-256 409157c1b4ce124c40185c1c1cd9cf7fdd2cd47917eb0cc4c1af0395c8bc99f4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1b8e2d89a1e45b7f27568b97c583b8e1b728485c074e70af8ab77d86795dce03
MD5 ef526853266a952d3533c23e5fbb4c7f
BLAKE2b-256 1dd60f9487cc86feb7ba6d2110c9a97cb048f63650944b59ccc1147bfe19aa23

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bdb68c1a6a5b5471f6843ef1b3e09e54ef286f8c577bd67d581753ed9b9532e0
MD5 479e87e2e1e096ff9b7e0cbd902e3b97
BLAKE2b-256 38dbfbb9c74fe33cddf5ef99545d8644e3efade87fd65bd65fc544c161aa2a14

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bbd96ca3134363a744fb8da674f2c0995759ac41ed771aced7457dbd4a79ee6e
MD5 51772e7ece2b94731e40d8ef36ba40af
BLAKE2b-256 b4a5317a7455f0550f2d8addde49b61e4a0227250acd51c403398e5df192ab67

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c9e6471109e40e3da2d041f4d90294a9040b82e57c74cb4c1deb3ceb695e939
MD5 791bd31a47604e4005af8fccfd39cbbe
BLAKE2b-256 47229542827261a8df087e38c595e96ab03b59e66f96f122f80b5cba8a05a9ba

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521134642-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e82e306255665e57583baac0d6096220dde2a813139250967b75222f8ac136c5
MD5 9978edb416979158791021f20da174f9
BLAKE2b-256 1835718d1f82cb1ffed7117c5441ff68c91237d927631a9d629259cf7240fad9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page