Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2e8545ba010c9076616779cf4bd9f2fd88c289844360c8cb7d91871e4c88d941
MD5 f9b0ad7416f2b0dd234414166c1f293f
BLAKE2b-256 799261eedafd0ae57024e038abba334ec1544a1beda78ec0bf02848ce9f9e95f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 510e90ac78d5b35e8b76c760c9832b41577eebccc8bae1f6a1134e0d1b8592e3
MD5 c10a76b7a95c1ee49bc2232f931a073e
BLAKE2b-256 d1cb4b6b7ce34fac406ad8d838393022703f6299bc3ce33d4e90199619fdd086

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b15ac5372dc880818cce929b309241f6a86aa667620f2c1fda1c56fcc969aad9
MD5 4c5177973e1aa515919bd1cad1f7d596
BLAKE2b-256 9f7c2c303bf1f676945975d52406e9c276e24d2ae59c0e4aff69956ebdffbf67

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a5cb5712e71145089c9dfe3bdf94615fd0c7c1c1ec2fa203d3a57cbef4c3323f
MD5 6e431046d553c687f8df4fa7b52a09f6
BLAKE2b-256 21e14294109a186e65d80ceeaa08279af717970d5c6aa975fd0bb5fa4a0393b2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95d466464793bf22cbe4be21ed86322546015dda7c359111612f74eb9cc92b09
MD5 8f8b7ab40595c1479a3d240001924da5
BLAKE2b-256 2ce5454b1384a7c4e04c526638c12cffed07953cc5268ce15a7e87cafae33238

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6bd594b8ee2fa70b86c549b086a4d34f8afda77c1332531641939ba41508abcd
MD5 dfdc83d4e6e0c5607a040900352dd737
BLAKE2b-256 4de35518059bec5742478c6c16a2e069bd81688efafa2442045b57ccbbeba891

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c901877d3080eee973f51ed2c9226815b7579d6373dbab4d1a18288fff400659
MD5 68f1535dd13ad7f95e0fb807ae6c558f
BLAKE2b-256 425711b23c7df491405d083906361c4720fc779e913c6f7802edb8585f725280

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 15db40f5de03612acdd2d7d0798715f2bb60fd9b6ece339859f827eb061bdc18
MD5 30f1665f768b7dfc6d06dc379e88fcee
BLAKE2b-256 21fd39889c081991843ecf208b6e5008871650f51a515e016c8e1a83d278c85f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c20494be22e6118b87548eefa7bf96665e69791ea284a5398712c28fa9eabe33
MD5 4ae05e0b6afce60619bcb35ba6bf9494
BLAKE2b-256 e51e9f118c508db700c5b207375af393455442569d17408b7bdaa6c596ba47ef

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8f1eafc9226cb484bb141baef2bbd6dfd14df659cefcf6fda78ef04f044eeb55
MD5 187ed60349331aecc688ffe56bc59c37
BLAKE2b-256 16fd847187ab46c0098a51b9e0f356bd20c813412be3b0d4c887ccbd033da657

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8c5b9da28d736d1e1b7b38796b2c8cdb37acaaa18e8d95c74cc9d9e130da26bf
MD5 8b69cfcbfc3849b4d2296d2c2d77fd06
BLAKE2b-256 1f02f012ad70ebe7dc071523ef1bfd3e3b5890285beea0c736a4531320e8e940

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210521182851-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 660d2daa13f2037d4c766a256bc121f542d0fdb865b0f656ecdf6626f98b90ab
MD5 427f1fda563da22a85c3f8a601770c46
BLAKE2b-256 367ebd2741a8d185449f754634c65c1db03ba67bf707f970de69bdb9562e1ac5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page