Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0a02533a74dbfb6a6f8cbb62302d813ac311b62e1eab98b5046de0a0d857c542
MD5 f8c4c0b1ec80437a05a0aa7512f3aac2
BLAKE2b-256 94a4d8108d2fe9dfc6d9c20e1afa5afb013437d493fca6349936077aa9c75cbe

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5174ca89aea5e72ad47bc2d7e75f715e614c5735addbc7d0c1535f4edc516d64
MD5 831e26a35d4388e2763e6e678630e937
BLAKE2b-256 973c39ee4c711be0075b6b4131232b01668b52f2a1036155269aad4952ad9da0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 530393a2456c69915794daa97cbea2f892a2edfdab294802037d59887410b968
MD5 a6aa64e9febbfc9e36918b98e8d904af
BLAKE2b-256 d098e97e7e726cbca3e14e16f12519eccd91fd892f09518bf1b04fdc521d8bad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fa977ed6d39392abc283fcebc4c428def03b13d6201a638696c95f00e4772049
MD5 0af877372fbe24271d2b934f0fd7c526
BLAKE2b-256 731796e3e7e86d170de202e321b23e432cc8e53e8028374b2e8618756b695ed0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a6b48711484c994bf24afeb803a323b12bb3e43e53679b2aff09d4bcb64f8c14
MD5 cc3f5af19b3f5ef987c8ac04481d0304
BLAKE2b-256 ef7e3c6cd19017269dc4c9c3d93888c4269e6467abc5c1fcfae6515938a1bcd8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 77b29325b3c15c38079ca864da0d291a3261212db3386ce37e1642cab4671659
MD5 22e29e9a173898ef813c80540b4f7e29
BLAKE2b-256 d0be6f9d5b14fb510810f3e21a1143a02f7dc63df6c8c138a4412ebcd7168b16

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6442de0b98826fff74d120fd76ea4a3666a32fb6640c3c73fb87e002e16a6167
MD5 aee237db32279f024e67c758267c7b5e
BLAKE2b-256 90bee1e8ac14a4a24dbe1c1ac2b153e0d5d52fd70e86e30ded8faa5ed80d4c76

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c032f5ef2df972de8cc9962615a168a22b8dd7b0bf17c6391d2d072bbdbe41e
MD5 5d76b240b380a0a1fd0da04b9354709b
BLAKE2b-256 dbc4673517c042c15979524305a135ae11d4f734768a4febfbb0b9864069a80c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ded98aa33d469a9667f9c0c627fd5a26fad82b6c7052db40d74fd69ed099a0f9
MD5 2bb16265bd8c0b60250d99e80737a2bc
BLAKE2b-256 816deede4547d72e19ff2a2b6fba9d8aef851f1888d07cd44ccb1bae636637af

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 754be378fc3613e65908b6a527935074692e4937758d9f540d4ea275b8ea86bf
MD5 79dbfb1fc8d13684385e99bee558c1ce
BLAKE2b-256 3416d46888ab2e23ba2f804ae4d2a32af0cf16c13bd1b1838b68d171f23e3feb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 be80d210654c4d1e7660dee06efc43ede4ad7bcc019f2d09589d978c57ebb212
MD5 8fde896c751f37b0a29f98230592be6c
BLAKE2b-256 4e98acd3d6b2e1fe170cebfb44a0d7e4a68224b123e9596f409cde241acb3b3a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210524191837-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f52f222af8c861dd7b2c4da7fae06ced9787ce000cb6e8b220a8757ea6592291
MD5 8f8a3f15081634b55ce0e80cade81771
BLAKE2b-256 4fb40abf53d22f8fdbf1fdd70190854097b78e538b5a76bd8571662e9eee1981

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page