Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7626c4680088239a310fc78c4415d7887808a64bb1409d3005c7cc96a8d58fa8
MD5 21d541d83379b36e35dd3d395ac74a36
BLAKE2b-256 c1ea476426f0250e0b397e28067b55fbcfe36014cefac4d2d9f599587f32c4aa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c6c1f32ce8c4feb0e855ae3da18210c727fdbc235f66626162320f623e35b85a
MD5 df85567e05fa4248a0267db8931dd78b
BLAKE2b-256 dae549fa8280ae1174fda8b641150ea073ae829e4d73387166203319987a014c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d1b5947c992cfae5624261f279c811b21bd9ecff7f1766135eb82d4048ea2f22
MD5 b49a942579ae43a38e85d95f32f91cf8
BLAKE2b-256 e3d2e8a998a2e99979dd616c8ac2d747e3274130b202a62bba2d4be9b6b3d242

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 824c4ba9c11b9cce3b510ded27972007ec22e9f1490614ea5dcfcb871bb7a4d4
MD5 42913c572fa9bbce9eb3d24d3f7c4626
BLAKE2b-256 05248b27ed3a21ad9d7996148a3927a55a013e5836799e271afb054aca8c49d7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c46c89ae0100e2e035945e300e9236573811cb6e2136c91f0cd82d4446f07ee8
MD5 4a90fb92c55e4609780f6ce51aae5376
BLAKE2b-256 01479b4f91ad8b6383d589078a2a69261bdcd0d9b2aa33fbf4f86d607d5ddb83

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 379d33d64ddc8224da87734e45327efc34cf85322238fbe20191216cafbd544b
MD5 d70400e38db0c57497518800b87e198a
BLAKE2b-256 dd41a123290700e10c8b0312de39c27cf8c206ae9914c739c8fc2e68cc40c296

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a6c251cb7ad5bf761909f20ff8d5d1c8b309e34779550df617f3c9c69109d8fd
MD5 2970bef3161223eaf1b9ee512a2e8db2
BLAKE2b-256 7a73702dcee38aab818ac936e5704e3b55d48fc2a601acb72865eef933a868ea

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1e5677fa2029e4c6badba3ddb35196e7d1e9fa1a53f3d432cb4da4f8fa124dfe
MD5 872671a03df3032563d7675b4375328d
BLAKE2b-256 25b55734b71b96d3cad7f1b96ee43d6257ab39303e1e6e2facf81d5d0dcab902

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a0a27fc633b8c8dd68cd99fbf568e080f35a6877a282008c48ea3cb9ec420008
MD5 ce53756d28e7a9613dadcd9808dc831a
BLAKE2b-256 df7122e3a1140560471afb99802be65ace291c4c886b0b20a7b2a618b68ed7bd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e7d9f3f303efd38563012fc16b0c8a3a76963610ea16ae6cf44c665339302de6
MD5 c9173571d3a91a04c1b537260ec7cd7a
BLAKE2b-256 2f1fb84e10296fad63b2935e71869b05f0cac8e34566cd63fc4db299e4dacd62

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b28eeac066135a4bd69c7e261c757ff38ec877d7fc28efecab0cf773a0ae433
MD5 5783d2e9c0683f213e89f5a00c979b97
BLAKE2b-256 0a2de67831567cb5434969c43cc154ef18f87fecb8e3813e910d30aeb8a4c8a3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210601134247-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b89c98bf83148d43e684717147779e78fe6599348be3468827b112e025553516
MD5 b7a6cc40dd7dbb6f566d4bd8d7e83327
BLAKE2b-256 b167d01164e6bfaf7c2af7a016b1d10dad9199c84b3cd9aadb02c38f95c8a52d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page