Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fd2c81603d381d0e54cc9ebf627400b8a64b5d0227286ce761fdb0e440a5fe76
MD5 186b4a3494efe8805986009f196140bb
BLAKE2b-256 bd51ae978b17dfa8c443c1ebe6a350565f804222342cead63bdba5470bb13424

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 524bedf0e5bab20641faa20bfff3567f622c69871cfe06ec250fb698bb0c79bd
MD5 5280a1715c6e7ddf2f4cdc99af2fcf72
BLAKE2b-256 13af606a0be72fa1a5c3aa710fa0f0126d74e6210fa856fbf2c706a3f90c5ea3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d4c41576f4cbdf8c28760723ee5fdb7a7227ef4ecc416ec98ac30a669606f5ed
MD5 ef49a543e8d2813973c541e0db2dba89
BLAKE2b-256 370e27c6bca35874a1339aa465681ed50f70bf438a938f8a3b364d3d5836013b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 446888c0314fbd66950e1bf038dde033e72502012fad61d6c02e3e114a6e2ac2
MD5 4dcb18dd707b7662adae726d48019f33
BLAKE2b-256 131e619385c5838693a958a1188794431aa6e2fbfc4b73316af74a38ec078a2e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 41482049d179d581fd67313d2ca0249c2a497df1dbba89f1232c7baf3180da6e
MD5 bc8b1b91bafcb50efdc8855517f336d4
BLAKE2b-256 5137efd0c522f5d99bd6a194245cb3e1c4900d448962f077e7b93cc87456c63d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 39b6642532f7290a3f12919675cf7188172f51bdd27c4146a3ac761285a96a15
MD5 99c47903443ba71318f8052225fdfd29
BLAKE2b-256 788ff9fa941e8b8e3acbf2da1179312af5c5376574700763ce2e3d05466ed049

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 052af71798ce4a1287174c004454097a18ce2d327e756af4192f8fe335351e72
MD5 3e3b5a7727dd6444a8aa446a8157fc70
BLAKE2b-256 1749d8a91336f4aeab454ad9f2ff7d875d05ede879e233c6e324917c06dcf648

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8ef8e14457b3f521ee3427f6b3cea8e57deef73762e11dfac2df9e3476c9de2
MD5 c5189b585b47f0cc419f6dca5914a300
BLAKE2b-256 8a58d7865a89d7028a8490904550a230336c81579a6c8f944d5c422584459796

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dbb67bd54026f24ec3684d7dd3c74d10ffe4c1a237a00ad41df15f6f0059b9c2
MD5 eff3599cc220947cb889580bfef60b4b
BLAKE2b-256 d4758cd9ceafd7b80ad899eb703ee67cb99f103fde9857245a8797e052d9f1f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 732cfbcb807ee1fe1e483f81749f0bd4b8969665d98accb0a5d929ac85e6eade
MD5 5e6fed713b6c0ad898549c43cfc2eab2
BLAKE2b-256 65d52b66967716edc5f2f48c0300710a08cbd17680eb9c5398c2e43094f7aa1a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f0a83edf54b2e4253aeb0df0300f248238886d7c0f4f44f67a433dfe085f4c75
MD5 41ca960228499d256f95b43f6e745065
BLAKE2b-256 e27f509b1b723c8268502624bec4162da41199bc023242a2ec4d30dc1da533a2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210602143333-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f94360ac4a2f6b662112b735796a6cee11b770502430e8648e8cc68d3db61582
MD5 6729ff5588d6c62fe5488032f328eb80
BLAKE2b-256 ba5106cfcd967beb548dc97cda7f90901e7b7695b66b7420fab5c6c38d85af07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page