Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6849fab463a8e90849e8d4336882c4af68fe419de090be48f4c85db3c6bdbbef
MD5 fb853d90b1484a578950f1be8977b446
BLAKE2b-256 388102137ab086a2358cd2bf1839095b81ad28d7f8488b9ef0e3fbf0f16c52e8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2ef09851fbd63ecc529effaed3278d091b180464d06c08427816fc3be2656a41
MD5 761a882a8f8340cece05a4a25580917c
BLAKE2b-256 ca4c02557ee48fc6ae2353042d560c6c6cf1e9d85b57477323d52cf20ee95037

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2bb81e98ee4d79c4b30b42971373340a7d1339aca6d4a4df17f9402cd21c9028
MD5 812c73b4b6d4c163a5a922b74f358c3e
BLAKE2b-256 25e8ba913bc1dec50b4f2473ba29d64a8124e13d01aa100b8d130b3715789846

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 879498c575371aff24889b9fd3b3b19e260b89488b92174fadd98ad567ba0861
MD5 6d8e70f18ffe6d398cee54118646ea46
BLAKE2b-256 68f23ed759edd4ec95e0411413ea085c8798186c95e5f7e0e675f6c58c346302

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bb2be5d94791f1edb6b28ff73497d9cced89e734cd1fabec2ef55a9a1714a431
MD5 eb825a612adcf9808822f5f592892b6f
BLAKE2b-256 6d0512ccfd5657a687ebe6755835f3619b219a40a769f6d1988f1d1c819f7484

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 98a682c155fa8625bb6e79747f08a8d05d9ffd55c6284107f7c0d47be7d4b897
MD5 5a3fabd456283f8ae91777e09c17215a
BLAKE2b-256 ca2e003a9d5f8bb823db75d2a3e9db7c12cb118badee4dc6295303c7ac79beb6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c1bcdb6f310df6a9fb46d678356ba0def93390d703fb5edf573ced3b5f5f2703
MD5 000b352f69a91073fbc6f5c549de5c4a
BLAKE2b-256 63da7449ad78804a8ba9566f1276a51d1e280a0c2b38f9341e67be36dd58cd89

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fec86487a822453721587989aea451dc851eaf30858569adc14a64963e20e304
MD5 e4fb74c8aa787dfb5d2fd0467f0debf0
BLAKE2b-256 9a166a07d5080a51711f73600c0bf41ee30d1d219cb9fa5263bc073c8fa0d4a9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0dea14f416b556d2dd698d5307fab93fcb2eea76523533cfafa5384c2cdc7bc9
MD5 432641cacf77c652fcd7ff6fbda2b311
BLAKE2b-256 cbc70cc96ade7b042718754d600690a7fb1322ce3526a7cdfd62dd2e36e84670

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 43780992a78a338a59bc7129985f90bcf57c37e54fcb9e74878170588f03a7d9
MD5 7bd9437bf972870a91b2d1893c3efba6
BLAKE2b-256 61d62993ab8c7deca65b4cf03ab9ca04357b528c591c1484827735f2601af19f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 acf1d3d7c46c173c505bb6475386928de4c8bf127d00e285714913b7aa7e0be9
MD5 2e754002f9e29cbbc66b16efe8982366
BLAKE2b-256 b151d1199cd892d2f63ce2e052eb3e44f33b01fa702421ca712f4286ea192095

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.0.dev20210630021123-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ce37c7384eb2ceecd2d5b6535249efefaacf3d22c196ba4798544a9d98606cf6
MD5 47f043b250c06062864560139365945c
BLAKE2b-256 1065fb89cf7937cbc4b43e3f7aac8e5d1c4e5e98b5c8d8590dd1b7739ce05556

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page