Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d974537dfcc7e9f40979e87c384e2a23b9861c6ab00f454c8ee91430dccec3e
MD5 714c737be4106651c1050be94cf72184
BLAKE2b-256 1a9988c6028924248be6a5f76a89a1315309f5ebd72bd6529a5a9514bf07b2ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 042490cfde7b495826ebdedadb680f0939df5605e9329959021a69764e2e9818
MD5 03ba7330b02e83f5cc008f3e04f1600a
BLAKE2b-256 73c03c8a8fc6c4901ef25315e443957f9020db3cf4aee33e6deca91453f14498

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b7e4c3f1588fc3a9a5ad608f5e14b4bcf2ceb380e93d2979fe1d32c347208ddd
MD5 114b98401aabc6a38c054e79f554469f
BLAKE2b-256 c2a8fd50ffae03159658c9c0c229ef8a72dc21ce475896780fd6b4ba058d6c7d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d9be51fa22ed35acb5a824259c17ffe27facd9681128b30e1e83b7d07cb050f9
MD5 eda39442c3a19994321ea9e048bada34
BLAKE2b-256 fd30d3a1e2b56d2a66aadf97739ac20450d7dbea759ff1e3b662946d04838ca5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6c3fd31b00557d89307a5247d3490b7f4bba549d5754027a1ee9a30f3be700ad
MD5 c12ec5ac2f39fe93528e1d0140bc3f9d
BLAKE2b-256 974eeb9cf20cfa33499d6988e9e30c7c38198eaef99dd887bd2deed68b3ca5e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 71c06803154d5a99405d9789a2ae2020b3a573e84447341c70f4056287364e6c
MD5 2d4aebf2dcfd9e34961c7c750e41b4e5
BLAKE2b-256 f9dc8015dd064407e76fc0b63495f741cee59c697df571f7adc4931f586d7d02

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ac060212a8ccd2fcbb8f5a355465d397cc2932d2077ed529aa4a15d8b10325df
MD5 407599d7c250b7724175efa64d639480
BLAKE2b-256 51d5755100138352edabd4ffba4b04b46e2520fe032f4028b780bf2479286d93

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0c6f7ac30996fcacd48f383296bd248fee2c8bcd375ed14f33a75699d97218ad
MD5 92d716064ef262aa2729df7932b31f65
BLAKE2b-256 7e79a046d92b3efccc89e7607ffd1c493be5c830c82ba411e867a318d35610eb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cb4c0301a286ff2022363a231680947fe6a927d91e4153c28ab9dfa3419651bf
MD5 6af9d3d39f4bc881d4e3aad5acc94332
BLAKE2b-256 3f12057d6b570a28008504f7696d91f73207a10d89a6c6d11c51b6e3f7dfd53b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 424f8498ad0a51c81ba58b915f705336472461cd4e233dc6f9b4c5509f91f68d
MD5 c063c33ee24b3ef346603c87942ef849
BLAKE2b-256 66c42c7bdf68f97ec293cf2b4d55a74726f0babd448f32c362caeb765c2e2d60

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 45f8959634f740c8a0045b34301671a23a73c21edb49dc4b9538979519397d26
MD5 7c2ddc8bfdd5de1789d4fd14dda790dd
BLAKE2b-256 75029409543f1708a0712398a4515be3e5c52b2b9a5f9353c4379ed87cc23c25

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.19.1.dev20210724130328-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d99e5f11297f815bbe56294243bf34e179e7da3c98539de48e5a9750ac93ecae
MD5 fd0309b973f59620c40e2fd4c84df9f5
BLAKE2b-256 0f4e1e7b77bff38a6f42e7401796dfcfe554c4b689b780568043192a3686aac8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page