Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6e1e3772c8defac0b625281897fd5b389fc803bc5566a78cb05fde3b38894134
MD5 676089e66c95dacb24360e0799fe0826
BLAKE2b-256 8a07c7ed66460bbdceadce7bd703202df371aa9fdb1931e6a001854a0a836ea3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4949d6314685e5eb646ae94caa051848007528697bd2112f6b20c1d8fac9da38
MD5 8d19e8a1cec78b2b068f54fe7107daa1
BLAKE2b-256 82133c43e6c702a904f5a73011b14840e32c77b42147cdf10e9705cef5b6ecc5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3fec92ce0e3cc55852dc47173c927c0b30ccfc3edd70be8bb0a8936c0381844f
MD5 fa005e070f4670193fb4916fbfd2979b
BLAKE2b-256 a13e1e29e610304dbf37887e589fdac72b5008c84704499f7c78594ebbb8273f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4f04124fff8aac3d95888089f39d99b7c430e466b22bfa1618a0796b3dffdb6f
MD5 8ba365c30b026b2a48a6ca5d667bf79d
BLAKE2b-256 82365db7919d18283e515a24432612bf9274b25e4085910afaaa6fb379a7bc1f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d45585ce62aefadcad7919bd21ee90dfbd811f9f36b027bc78e3e005195431b3
MD5 9ac6aeafac684343e2f91a2ca745bae4
BLAKE2b-256 2b4bc2ee7f28871eb6247c7a6f2a3e915adbcf45f9f011aa3da3851e8eb6763c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6d666d1dafd63a992d5d9c274a99be74c925a5c5bb2697ec33bacde4f0134ad6
MD5 5802dffa65fcbd8721685c75686ee275
BLAKE2b-256 2fb0640db26b729bae54fcd1eeba81d8049b97ca69005514c01e01523bf17383

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0978531739c6b46d7587ca415101d2105d189d08cc77fc44d621f0a31ec752c0
MD5 4964d580152bf2b7df4f85b2add0925a
BLAKE2b-256 d2e09c5ba6f346d547aa54d656f7eed4eccb6c0880486380991a87e77a693c23

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9d85c6707df24beb75dea3bb5a9df3dc22b563c21d1be7896c103ad5d6c5c94d
MD5 66a022758aa98ad53cbe73befdc4415d
BLAKE2b-256 943e4679057661459dd2a2a707ac1b838d52db8ccd55146a6f9da0ddcf88ef51

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 71c8bb02054b25d9edff419aebbec497ca89f780620bff644e6f102a274b6e23
MD5 571cafa1549be1ae42b83c55169af625
BLAKE2b-256 2935f1634a9d104da6fc82f24a16af3e7d099e8a3dce5e7f4ee1cfb6f43293d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 65c0b247489d0c49adb70341961530964ae21dff1775d263b7e681a41b852276
MD5 c2a7cfc559d4cf8bbcb979bc886aaceb
BLAKE2b-256 8d9d4cef8f1d141163354ebb81f148301d2dfcb26c0e9ba7c7cf16e0ac9120bb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 63d5aed505fca16ac5a135df53eeaa937cdfc8e701b07cf57cff90b6d6501342
MD5 9be3c9a87279e2b011bc353dedfc5938
BLAKE2b-256 baf0a9218845858af0edacdbba9ea80a7af200709415743c190cdf1ead6888d0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210708201251-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1dbd1315388028932b22e03247232db4c9cac039d74ab14080ec09f8c59ec317
MD5 d3cd585474cb7d923c8a213c266cdbe9
BLAKE2b-256 7b5317425c80878048eeb35d43dec7b4c3fd739fe4ad26c2bb88813f4a62f602

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page