Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4afa5415b9f15b1ea626e21982d1b2483205bf5197da349634dd51d0a043f465
MD5 89ffe9337978df430af54b3d525b92d4
BLAKE2b-256 0e2e38241065202ca53358fbcfdbff7eba1bd70323f73eadda25f5fdfbbd93b9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 893331782f727c234ae31b26d4a7e0ab3fcd905b79f7aaeb0c43f37ec3f69c3a
MD5 d5c190fe00305528ac101aded24208bb
BLAKE2b-256 f5407a538971947ba5307aa27676fed1679578879bb77e73df0cc8c6807cd8a5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d9978a2cd6add0f7bd2b7cc7f2fe8f795bd9f7479027fe4ab96ef4348189430c
MD5 ec545c9d524853799d7042ea317ae0cb
BLAKE2b-256 af778cb2875e30f75f6bccd0699d0693e726eef707a3fc62d01259363a2bbcdd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 060d7b5d92887d44fc9840b6273f57ab4217cfa3ada2fcde420832bdafcedd35
MD5 8744802634531300d2dce932e6e1dd60
BLAKE2b-256 ac92b7291a34a98d44bfc83fb6526a3e6acc10a4fc2c9fae2e834fffc5484e7e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0636f62d030f722530b44f5e00603ab30f01dd3a7a57f9bb3ec05308bec9671c
MD5 5852adda14cb480c09d1073948aeab8f
BLAKE2b-256 b10e72632363280eb19366e870705e5a29e94c209efbbc5deab5f1d23fc08749

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3a8b81a283f20442def83bd93fd6a66b867fcef0db516c7f76216d918e53abc9
MD5 030ecc3a9b98dfb3f0bf298a57f5a1e5
BLAKE2b-256 a5572d32bb5d9564af7142189e89cfb94fa57d3069a017041b89954ddfebd594

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ec8d8ef1509bc63c30e9b4bdaa812630667ea64476c0c4b0d32cbefe00318169
MD5 f5146f817ba26a6cf2730466f71c9fcd
BLAKE2b-256 7e17677d05be58bb18da4eee2d148ef02771a9e933fc2b4abc5437f56ed6499b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d6cdeadee2edc1a038792deeb757e1f5c210c1ad49aa39b3a8f9985a1e1d14c7
MD5 fb3dc56ba465f8026672b6bf3188f304
BLAKE2b-256 687353dee4820361db82fbfb6169d8b41a2ef309bd9bdd78d51574751a6b957e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7049bcbf0d49c7c812e642c66149ef6939480bb69b1e5f0ebf2d6af49e0b953c
MD5 dea200aa7cf18b93d3e9b1ca7f048c55
BLAKE2b-256 7ff3cd09886b8fd11bf6de5089b6b0accb202f5b402a29cc2763333d240a18c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 caa223c0514d0d7b9e25368c401a3b8262e85a82a7a58b01ee29f5a9362463cd
MD5 5460051610105c530eba21e50333be68
BLAKE2b-256 5a07bbeeaf22fc030636c8a6047d60b7f421883a5bc0421519260014f51c66df

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8947e0ca0cb3005b6abf74d6b96c73456930d259f6d42db9c36ac94b3af2c898
MD5 86713ef25d285d53f08f1cc25690ce73
BLAKE2b-256 cece4833b6720ca8107d07b883ba05abea32d6201edb8a7504011c52efa7cd52

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730101436-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8be8fb5ae4c44f280ae3c7c910e903d0af2da6e87c7af6d8e62a3a7846b3b2a2
MD5 fe0c54b9a981438e184246fe96fe1e99
BLAKE2b-256 ef17e85a3761f56d63584288c1e07b40993c33ed5b9f65ec973b2b41879a08b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page