Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e982ac662bb388e54ee51f15dd1aaef69a69187dc3218196364eafe5849f272a
MD5 b4a4c7955d9fb057c85289171238a5ca
BLAKE2b-256 481d4eb16cf6836cbbb399a3835f656a3c653567c4eae346b2aba8d7ce4e749b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3602c4b04b30ae08c1b314c1f81e3360d373bd5f3aa0336d216828380515b9a7
MD5 3fbb6037e0dbe8ddf7aaf5a0d55c5a6b
BLAKE2b-256 399e34854bd527bb3c392821edb4d2d8706d54eee6ee6bd22df4c36c8ce5f261

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d6695ec73f4e60e40dfebecb64bcc2dca0b1a38a54e3f9faff775105d93fc887
MD5 c6aba337bb1b499e05f7fbd4aaab3082
BLAKE2b-256 a5939343ad4947a94197917941c542cb3c707d8f81e92bd8cd2f5e161268c18d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1a9d0fbb9ee89f74f3c1bd2307c7221513cfc0ac79daaf28a8abc09358a154e4
MD5 341779c0b580fff00409e5dba17c3c1c
BLAKE2b-256 0a328f8382d5ed0bdc3c0fc9d12f8818dac0ae9de62e25f6981c1e2b281f8ed6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1f0e315afb32c97488dc525e229095c82347a6289d62404781c8ff27b3f834f
MD5 1ccb9aee8f12247c2f54b1be68c616e9
BLAKE2b-256 2cfbbc40ab568c931692690357a531e87362737c5fb3dc026398cee62a933077

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 82ef15612f6cf6c7461f3092fea1bd5629df6dae2340f4b4b03d647d20601e80
MD5 450e9a51ce402e0fa2e9d964abf02e63
BLAKE2b-256 017381f7202f40a1bd6c837fc98eb31040b8447cc9eeba049ad53cc068ef2976

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e4e985108ce90fd1370777127d0b3c3edca81b8ff1c60eb0b8098153da6d90af
MD5 599dd08349758ce1d596bad9c27e7e07
BLAKE2b-256 2c74beaacbd73f1abec21b6b75282be2cfb26bdef9371b85121f30963234968a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c3d6a8b79e59c93f39327a0efd04613db64ec191254af9166b905d77fbdf2f7b
MD5 cf7ede9a904c6d2ab6c31ba356dba40d
BLAKE2b-256 f877a37e4d4538413dc28bb67b4c41e512709fe4ad592437a0d553c5cf6149bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3e63ef553b7402f18a5f71a2c12630cd9f5779b5f95ce5c8616b99e4e0e940a3
MD5 371eedbfde67e953e00c1057af5bff94
BLAKE2b-256 c5863a244d2b09e63ef8b9326825cfd0b97b1b30dc5cdaaea644fce20f599bc4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 abed0c0c2d85cf8c3bfd891f8f804cae9117a7b8b0462e3cb9190ca7224b4f73
MD5 cf442de515a7f60bdc534f11f39d6411
BLAKE2b-256 e79536c3619f257225dc3808ee229850e6e6a2932ab0c0d58d8dfaba943c09dd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 892d11cdc56232b2ec2f639aa0f1c8b6a3bd58fecd7b2c423324548182b9116d
MD5 a7c00d8598a53c8e62147471bec2693e
BLAKE2b-256 fd8791336fff4aa46ec19a7501a7bc8317df31f5ef3e5a01b4a761a962de5d1b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210730152908-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2983cd8d4b54c5210659c8b8dbcfcebed4f2aa4e4d5c88e058614823f1180dfa
MD5 6fe74276d429bbe2cc56b87b69135c63
BLAKE2b-256 a8e6ce3630f2a8287fa8246550726b3e08343d18057ce3aa2a8feb462c56b19b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page