Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ec7f672d4601222a587c4526c4c5532cc3e4bb137d53296351b84da48d13d43
MD5 855cb2feeaa03010bdb788c29121b539
BLAKE2b-256 f45741ae7c22f25a5264a282f0edb25e5b1714fc3873a26d30dc31f41fae81cb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f91e4786d1b7930429c8ac2beea99c9977820ee92210a1485ae3172f2f7766fe
MD5 fa61ab5a5cb10291e3d0bb40e4e44a06
BLAKE2b-256 0cf4e182108f0edf45d7511f387214d093728b792e6c93456b43501c44b5cff1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 334c4f381841dd13a749730004bdc5e4edf41a017799ea50c490af719a7e2e29
MD5 8766d58f5cd251af9d6e47fca94aa41c
BLAKE2b-256 c1551aa6b04ccadd0ceeb10ae7a87fa93b3251bf462559ac833a4f9d744fa1d3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c96d974c980d6d3d73e33e94d59ebb44344b947da53bc0d366919ba45a8e5287
MD5 e643cb77799445e639fb6b8dbc3d6981
BLAKE2b-256 5c21f4fd16b7f8bd5c9c4166258ceebb1bc51708d7fa75f6b6aa5971e1de4b4c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c5e550934d7a52c08629d4163776df4f5224e3339e2a5ff29715c10e5a4d507c
MD5 e71c902430ddd3f2153c373810625eed
BLAKE2b-256 2b14e9d4286e7d99a22468fbfd693a137039511cf042d74d2047b593e4d228af

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c84048783550ef954c690b574f0f77fd060e16354b7210874b72d528444c5bdf
MD5 c4d4b88fb429764895600499d79b4a4d
BLAKE2b-256 13b4e3e7e5fa78fdd1bbb41726fec46c039e3a85ef456678089b5d68e719991c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 de87aa8606bdb30a758297aa6dc65245708f5f46c9ecbc8d27ba1afd33430ef2
MD5 ce22a37f204808ce1d204022af1a6e2a
BLAKE2b-256 952457090f612e1a43a2138ff42058824d3c5efbac23d81936aaf33df09e1540

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 741a6d10b24e1c9488dbc559359c21123f3f04ad88294dff6a9fb48f66cf48d8
MD5 9363bea7696257fb700c1f847a4355b6
BLAKE2b-256 6e49eb2d72d2ec1afe7f2f0650bf4cc05c9ba662b6e926ebb92b113de738189f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0adf5bb3703b5b9b4253fa35b5e2abc807000b6e725ac0f80618524efb9a2273
MD5 e1f5bc46d90f1f72dd4f3b178d18c178
BLAKE2b-256 faa0ff6980bada415eb07ec25479936fb8346f0535338fe4f3449f7d177129a9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cebfe11d3e1eace6aa14cbc20eca69ecb714f9fec9b5d64a5a7a3648102fbd19
MD5 bed8fcc11a003b660f818426fb90c128
BLAKE2b-256 a2ac104b8fc35307f4d57a996c30cd443284eed5a81bad14291a30dea3f72904

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e689407fbf4ed46bec95fca6a71adf8473a4cbf1d797ffe5945c99201ad5cfff
MD5 5813f0015b47f94ac60daa04bb4aa240
BLAKE2b-256 d4f7fcca81f45d35d7b761017c5a2bd0cd8d4d04bf91d4c9f1631b9eda304307

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210804183732-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 575424201eabe7c9c17ac9e0dabef156316aac0a0f3cc1664b646eb1c00813a5
MD5 0f81765b9770254d2594afc6c943a066
BLAKE2b-256 c784f5398312f0aeedbe8102d4a42bf2d9462519e7f9902928af93ab15646089

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page