Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 87b92bf37176307bb5e550101a052ea96cf6caeefe0a0121780786e00c89cc53
MD5 7513349617dea75434fde5e048f9de8d
BLAKE2b-256 65a676aa6ab458e262f88a952f200389dce944ddfae374ef0e6c1663b966d2d8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 58b36c3fe7f4d3c64706e72098ac3c9ffc7b9af36c1b939b785a1ffa43a8f5d6
MD5 05256447a91b72b558d3ea7248ce0841
BLAKE2b-256 f946d256cbec9d85803f10d0dffe1f3c2033bf189de4cc211a76cb21d45b60fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 67d7299fa9292ff5e56b3fbabf4990d1e9ef127d795de51b029c10bbbc3aa77d
MD5 c157449d17f5d22869033575684f5811
BLAKE2b-256 b5204747bed5ef3a5ae0cc3cb2c23f9209277ee3d724f74f70c7d95bd8d1524e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 29f118389dda5884325ad9d6ab212f14a08bc2fb41abf3aac1cf0db45f787293
MD5 2a47f00c799e074a6e82d901ee505a7b
BLAKE2b-256 20a99c52c8bd0b4a7ad7c174998d60ca84dd1ad9f2935111dc62b523895cc5f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f201e281355ccf81a9a46a4980dbc635c17f960432c697ce230cfbd8bccaa12b
MD5 84d4987a2fd673a5f3f3053b570c6ee8
BLAKE2b-256 67e468e64b882866de859f6fb9ea31733c7f147c7518865a3f82220bccdb4f0b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 84c09ff5dc321554075910ecc00783abe1cad3249b2f781fd8689ac0c97d1e31
MD5 b2bd2f4150d12750e6930724b8389459
BLAKE2b-256 412a8b30e466f20b5ad3222e866c2096fce7f5139d9dd5f1f200fae6929b40f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7ade214b4628596e0712d65939ba63f891a887849a8db934d8b8ad235485f360
MD5 3d1b46d27417976df953cb5eb5483747
BLAKE2b-256 b97988c7036e556f5bd3e56cb4645ca6d409b7002d66345d958a17a77ea8de49

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ca7d8826b78492f330b206990fc0e6fff2bb53631092737077f33f822faf4277
MD5 1a94b961e1e4c14cb8715cbe091ca4b8
BLAKE2b-256 825685f506d068bccb281be878331b5fc916cc08b20d0f66f8e17d27f1030541

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fa1372d6c73eb6995c5eb5e9df8760dea187077eefcfffebd8299a5e74931a68
MD5 e0e34fa7222031f4376213c7950c095d
BLAKE2b-256 ddb612fe62f84fb963d0bc82ba317174bd0d36781ef642984201f63af576c394

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d6521c9fb47d88428cb10021d8c94320ff48381270232000359da20db1bc2ddf
MD5 a2605881e2387590ba3b456b6779d163
BLAKE2b-256 2225760941a6b651c171fe8d7583f7e259fb09b37061bbe487c6954bf6c88ae8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 39df714249a4c2c870fdc4e6453063a3b4803e80e86637a7580a51e55429408c
MD5 468caff414f1eff1c390ac7f7e7ec48e
BLAKE2b-256 4fa7ba5bec8ef01eb39dafe66a831682ce32827c86a8d4b71c5fcba1eafe18d0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812134912-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2bc14d6dadd5e1d236b650c4a3b5677e731ed977955385743ff7d31f2304e822
MD5 92c53bffc0105d919ddd50c06eb38fde
BLAKE2b-256 9e701a889111e0a250b66ea5c704a98b854c45c6dc5499cf8bf2f3a22cb580dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page