Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 acecf7bcd22794a31011bbfb203c7feb95884fb493111abac6276a0ae6f2820b
MD5 837710c309eee405850ae1c0dca798b9
BLAKE2b-256 330f77b1306edcb903f6f2fdc071b48a2de24421c48d2d1a613f181327b843f7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 abc149d5b91ef5613abe7bb05708482950789306620847067c9f9291243301f1
MD5 9665a825c6d03aad7bdc490a07230621
BLAKE2b-256 d08d4c3021934079d010047644576522a8079d3eea1e5365884a9575bc954ca4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c50fa3b967dcb2b2177414b667596dcf123b967704189aca1aa82d409dde9f6f
MD5 360fe45556c589dd0311c3e9054ce18f
BLAKE2b-256 7b61ba191f940f524065f9b3b34132f14122d5a986f01e75a2bd224190a7d6f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2d51c03fd1252d653629e752fb9794b671217f1792feb2ceedccfedfa6c15958
MD5 5b8eebce92a0441c94fc9ea820922419
BLAKE2b-256 5e66602cb3138e3ada93eafbcfd7d2cb39c1ef47c261c28087d0ed7c4908d8f3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bd358fa8d9db9694488cdffdeb7b20968a14cf946dedbadfc02bdc4e6820e531
MD5 0ae88244b8097e6ced0e20eef1d99c14
BLAKE2b-256 ca6f473dc2a3c5a4ffaf8ca6e42cfff373c77d1026ed126b9b767addf926cc7b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dfa81e96cfb940c429a870f7570253a26591de4345ae2e3a08398dc562908376
MD5 a9a91e6b1387037f6127855e75a19592
BLAKE2b-256 97dba604a41951326e9bce5728e57c5e8a7f806df6fd96c7fda9a4627134bd17

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 54c02faf52c236ac6ba2be790ec4e1ecdd5628a43cb892e79a56602563b07438
MD5 dc74a177e65f4f021ccc6fae82ab22ad
BLAKE2b-256 f7dde09c181886ebfdcd6c6a4b5a920896ee13e07aa1aadd789cd2c166188ba2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff8a1ff4fa927f79a7dbfa675bd51e0d05b5c828b0a969d1cf77d6304e085a29
MD5 ebbb5e8868ea99e2b8acfa5fe373b2e6
BLAKE2b-256 af0cad944b43aab3b2292c944a49f83874d747c861cb80ec0a9ac68df5e1f9aa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 75f12b77f300ab31a9c5cb12660b9649b565bd189e540eec17af6d3c14dc4cb4
MD5 b1d4cb0284696bab8c29d61b9ec92a06
BLAKE2b-256 d59197d5de3f3c83de0fb45c9205f42b6abeaa7b60cecffcd309faa01d839ca4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8797d506031c6ff879b4c4955f218c29dc89f000c225d7e67c0f24279a99f004
MD5 a9595a4ecf20dc99fbcfbaf6b772b7d9
BLAKE2b-256 2337934051e93634eb154e8e79fa5225cab6b3d5fc48dbe18773b1659cea6ac0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cda3c59ba8669d6535a6d131ab4c05854dcd6800a122d72a2b8dc550e39987f3
MD5 60ef887cee4c5ebb71ac28934889c281
BLAKE2b-256 3a895585f790c4ee43c9bbeb49e4daf9285d0504f47c889da9040975ed536776

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812184149-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2109203b08aadba21315c9c20b0708e1a0db1afa9e0356af4f11154b307bb3e1
MD5 29c94550b5703b5ff90950866f3b4b2c
BLAKE2b-256 f5623a6dd6111470959ff6e59e6bb7b8571e573c83bc55ed84b70015cef1aab3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page