Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6e0dbff623d373b1c36dea9af41d3e2d396f75af5d5608d0c547ded7089e770a
MD5 53a216173f6543092b95d511dc325353
BLAKE2b-256 5a99cf08093d91843ec9482db693562320e776c5fc7bf9f1f466e93f952cf11c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a5f20acd86fc6b9c5c93ed9f68e859d3e1d8c2bd058c32d5688c1e022bee3f34
MD5 0c895592d549a4731e94c81687626157
BLAKE2b-256 b186889f841def0ccc2633bfff0a22b62f062f757cfc6b42b9caed8591f95a9f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 83734ab918f3b8d2af9029cf082e1037668c3b62ed18ccd8d41d7599d9e044c9
MD5 cc7f49457c81f613574c2a5afa215be8
BLAKE2b-256 31aa5d6fecbdac9d88ba2e68c4e330952ddcf0b2a5e2890ad9eb9e031d07bd40

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 de678cb975fab6d9282e7bbefa315ca23b8251214cae4e55aa3c748791d37567
MD5 fd5c1be608ebeac0b1a966f1821b56f9
BLAKE2b-256 727356126014716b03fe132408ef7af976b70484591e6a20d62b1fd9da3c12de

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7f9948af0c855490b03f2f43ef8ddb20232d640e695ca95bf2319085bdfc4ead
MD5 846fe9eef13ce5be2fdfa0cdb7131cc7
BLAKE2b-256 b39d5bdf4358cc75a917c4de93b33dbb91f05efa7c6bb3b19082aa714ffa1dcb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9ad00adb4055b858eba3d570412d8b3ab59e02aa2d1e7655d23ba67388aedeea
MD5 059758575996b8344f87e723b4feb9f7
BLAKE2b-256 b85e7fdbb1b5cc274a56de15a205f22727921465e4736f14f18a68b98954ccf6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8fae494971fb7b13f84fbe0109e6957e489e883f948aa24460efb44ecfb0fe1e
MD5 0a47e539ca878d3c8a0b2ca205c47548
BLAKE2b-256 fb71d2493c74f467a2dfc52108b1f4a1e84a86475ec900a04c6a7b851a2764b8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cb9e0b4340c2b0fd0060f58c83c16ccf4088ed0d55c3ea5cabe1fe5723441cdd
MD5 e090a9553e79350278509157d956886a
BLAKE2b-256 1af9c07250d9269ec2e84b9bb2bcc9d24a191ffac0d6dbc7a6e38eb365a8743d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 176ff03831468038b8ec8ba7fd8ddf257c2029bfd0ffb80af32ae2255157facb
MD5 45090379c717a02326c39730c2f5f366
BLAKE2b-256 28d9881ccc7ccff4f73a1a1f84c13c60ba21fbc64578547f22b752f782a871a8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e65c5210aeeba8658a46dddc402b9134ebb47b5e1f6c24b0bb1781cf92c3dc8a
MD5 bed08f63a37129dc3642ec2143c9f63d
BLAKE2b-256 80f77d019033f284b5ac9942068272bfbdc1e242493033739cdf69aae2acb096

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6a43c372e471d3f2ae9fea8a40b3d9f5b7ee7f8911415e951611758456d3eecd
MD5 b02176414b045d1f903394038233dd44
BLAKE2b-256 35c5e7237cb700eccab2d1c8348fbee42b1d26e140600db03d54d16aafdce621

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210812202054-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7129638a872c5f6b822e504e45e8534e130e18e34f70f1e3dfb10133ed9b30d6
MD5 a636e608d713bcf18cbf05785b1cdf9d
BLAKE2b-256 63f6e62577da5a9d0816f25404651ff5a9d9ed001f8fdbd45ab66650098c0b1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page