Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 058ab49019890738e9a6a094d21d3b1f275b467e5899b74b0cbe414c75b86b7e
MD5 bf8b7c0506977417a186593f63de943a
BLAKE2b-256 5bb200e85483d1e55ba2e28068412b7af2e62f2a58936a02e8ae6f6c4d322cb4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8ff8abaa867af06d572ac591d1b6b1b0e5fc7af655d0414a650ecccbaf7effee
MD5 60a7758581e7b028c1fef4702ad81757
BLAKE2b-256 7896032a21832516d5857dddd9b41b43f3c970d038c668299aa052d289af183d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e94056d3a75f0f4d566d3549300804aad7ccd53f4435ad85e602f9b54516757e
MD5 d6aafb20bd276e9fbf451efa658ffdd0
BLAKE2b-256 7fa6b23603788ee3c7ef23b80f6bdac7d8a6f4586daf7e79584ef0040683e920

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 98744b22c59566f7a3dbacd425c22e4fb9831e8756ff678b13c78d1b39a24ff8
MD5 bdbcdb127236a841bc37707f7b857b4c
BLAKE2b-256 acce0c93d87f2ccc2751c52822fc1952bd2c580cc28ed9272f659f5a53d92b5d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8f2bbe278ba0a0ebff0bc8a7dace3996c69ffc36259394d2feb3a61f42ed57f2
MD5 d39a87d5ed8200d1495cfd2494d95127
BLAKE2b-256 57086dafc2923dfee6f3831fde2c96e7aadcc5feae826d223fb365f32bfe33e2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 30e8e49df23d02b43c601d9404f243316cf5f8231f559eb557c5df68ddd15b32
MD5 494332f624054e977f27e823bcdd08ff
BLAKE2b-256 082cae8673b46773a7d3fc3d8b18035c1efbdc65748fbbaf2eb4e695403db84b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a07acec4b50ba8b24d19768cd9e2c9c3943cffbb094bd8319334b7ea1f423edb
MD5 b87c442470092636778ef44b4a800cf2
BLAKE2b-256 5b9549786369be821a962f29c378e730d5ad1f68767048b6bf0c44c07da587cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9c416857574f4e52b8b7839ebd0b1509a150850fb85f153700aae61c42c0d7eb
MD5 1f08abcb99ad1cf286bb42b598a3bef0
BLAKE2b-256 989638dc9db79714e22252efb40a657cb2895e10eaef0c687715a7d5b54a1909

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b4cf6ddf0b0a32b8a8fa76cf77f917d54a764144b062d9c86d981695959c50fb
MD5 0ba9e8c34fa7b234d389a6ae2355621e
BLAKE2b-256 11a5dce6e9bbf9a5b9a8b71a03bf28e028557b32851db40df6b8075877bfb126

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2b0231968692943545ae44da0c55c1cd6d9724c29b2984c586620012b7ab0006
MD5 38bf1dfc2fe30e0e163892c0607740de
BLAKE2b-256 3f475d34c0934bc80613d3a8332c93bbe582d96c72e321461ab56e7e7bce6eca

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c216efb99158dbc91f93c8b32edddd6b12c8ea941f97ec4b9eb89502c75f1fa
MD5 feb01eaa7c7a341538677c7d1c1d9749
BLAKE2b-256 8c00312c84cdb5788aff2f4a04a0825c611aef2f8fa65c608be7ea17a84ab818

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210813191543-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d5af265ce73c11695a923734a300892e6da180eb06430e95052bdbf81d57234a
MD5 37d6df52c108a07ba92d819d6ee5be55
BLAKE2b-256 d0e8a45ce35b5b750635a397e81223e05e750d1e29da42231613d4bb380a053b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page