Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c3594629f80c6bc75cdd592c2b4c96cb6fb82c25eea4a6c1860651be092084fe
MD5 fc69ab7bd1aacead081d6972bd5773c7
BLAKE2b-256 8a83c7de7932440300199e1a1c4f0fe1a5bbbd77c1169ac4029007bac18f80d7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 426d5a5052fbce0ef5b2ea138e4d8e8014f0f9f0c3c70be06dcf7da4fce7e0d1
MD5 3f76cba07d69363f869bb1da8b7eeb1b
BLAKE2b-256 30719b516220ebed81a106e94a803e1782867a83f13f9379f61a074775803c5c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6fe126bfe67de6228c578473f987ee450fb9f415b5eaf82fbc87eee77a7cf984
MD5 256868af796e96f67eaa595d2d0876cd
BLAKE2b-256 77b4d34388b6a5ddfde4c1526385b9d5d1f2d47f20af27bd5596013579e4099d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 16cacf2a87dd6fbf17ce92332844be33f3eaf89e6adedb9b77f2a0cc7ba096f8
MD5 d405506d1b3975638e465730b154dfaf
BLAKE2b-256 0df085491d93210234742024fc6ea64011811a8b348a485d4cff40f52f62b094

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 86be8ed2ca65a4196ff19f11ac432eaf2c9244b67c4776f2389fcf60ba3c722c
MD5 a6cfafde668312c3dea409989f2f8c3b
BLAKE2b-256 01fa1a8b0fd1d4948bbdab0212d85f381df530d32b1e5dba6fb63416ee5c183c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 212f60412b722547571d7e5c23f2e11ec37ed98af4481e5cc021d6aa088b66e1
MD5 48325f7afc096e3e82958dfc61929982
BLAKE2b-256 6eb6da6b1eda02246c2a33cbd4428ae1487242d103ebc10b7f501a6c0827451a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 44d5f37be46ff4e3acbfd010692353c7f7b9d5d96958a2ee79cb256f86f58108
MD5 cd4780c9b8fe636f5793d42edd5ef98f
BLAKE2b-256 fa7be355e190fd37891e672efcd94765c9d64f8ace4d8951762336cfd7a43a87

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a163d56361c692c99f30d092cd3394d8beb2e6a82777fb6d0bb6b6c960d31ce0
MD5 9124db245ef0fe2de49d855b01548a59
BLAKE2b-256 ca4c603c8b2665efadfb323abf8d882eb596d60e97e1fbb02885eadff0b81b26

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 438527ad6121b26e0b064a00bbd0185b015a7fd460b4cb720be2e88782a73a00
MD5 b0e67371174faa4cd287da62e157fd4d
BLAKE2b-256 0f94042ee5f2c765243c1799cd99e5ac62a32f19bdaa5bee02c0c01405cecf9f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 32e104eb44ee20f167e5939f91235d97d3e68bba8a8e4c9bfbfebfad6c465543
MD5 a728728b60e75a9eb8c78b7d6c440e8c
BLAKE2b-256 2d2884cf99299d6ed9c0bc741a4b936b29003f7af8028f58478d9f3ae54d2142

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 848c94b9c3b1e18f4ccb6b2dbd6256b5356f4a59a2c40dbefe6c2903b0b14131
MD5 f50ae66234710b41da01c377703c8e19
BLAKE2b-256 c9401b8e6e55c9c90af7128131f0b461203e5c06fa54d1878701398acb219132

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210825225307-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 55885652f1acf04d03763af088b9907438cbd5f3a5e11e98461eb5877f6bd863
MD5 eac54b817095daeb29d99b075175140c
BLAKE2b-256 8a03ee5d494a43bbf4d843fddae7f0c3a466dc8fdf96cb49d1618dd2fab7b164

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page