Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d8ae4c22f9b5b8bda3ec655e8ca6d651ad74f8ce049d8a404da1fdf8d58d8a6b
MD5 09a9e6539c0da0b7b16ee8a059ab9319
BLAKE2b-256 d72447af97f19e968521dfab96b4a9f82265e8f49acd787bb1cdbf2f8f1598f3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1744264d60361862add7a1b0cea08e030cef021ae9739835542ee30c3149ea93
MD5 e652440afd3749445d6b25c6430b3a19
BLAKE2b-256 0e7e0f8187307e06671b8d06e7b5f1b3ddfe030005f3c120fc80da66bfddd5c3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2f58ed624d62423a5fe86c454be8e7852beb1c156c60ce7ba46bbd00500ab630
MD5 606d7395df454fd096a420059ef13e8a
BLAKE2b-256 4eddd2bdbf854505357e950b9e8c533137a3dcce66fd66285b93a24ed6a5736b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 08f053ad614222e1d8356459ad042a9115e63298cbb5e5acb664e53bdc8b82f6
MD5 efb6a504bd2c76ce8b1b8acae202dbb3
BLAKE2b-256 954257afec0be0b79e0af7143df9202b7ee4e650d48e2af13f9d33019b8e43fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 15430364b6377e6bf79158990f4b9ce77a39214957951d0264a5aa19b63f5713
MD5 d96b65d31d1bcc8293c4c61a8fbf8310
BLAKE2b-256 24fb25d1f319fa8395cd1ae6ce172c229ae18e7c54fef777b1f3a1483bab40c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4932308245e9a291d4ebb2c61140761c87b21bd58b876382d256e8b9392e927b
MD5 b4493002b932abd12e056edb1f7292ce
BLAKE2b-256 d224123372451c9b263f56f1dff7e9e913d9542039b3fd7f95cff8a5ab27166c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9c2641cf2b9fbc82e35e431409757f802ebfdc10701d5e9a993b586f8c3f8ad6
MD5 7fb9b1a7f9ad0da5a57913a526954a90
BLAKE2b-256 1b908854ae5965f602cd0369fede82f2051944ede530ae16c8c80c6cf630275d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bc6d89a6528ba27aa1a492d8e3cb81f41ab33b34130823d8b6f05a80451fc0c9
MD5 b57205f6022b720f12f8de833afdab35
BLAKE2b-256 7a71187c5a61af4bac51dfb1b890c55b7107d9160e88068c55419a543f5b203f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 28c64c2e4bb586b732a73c55effdf8494436f9fd2329c0075fd69b19a951896c
MD5 29954a5a3e3015986cde64dce3576e99
BLAKE2b-256 00095b63d6ab6f6348c97dd827e6435edb4157ccf023548570abc17c66cd8c89

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c507f5f26042a5bf3520a91a3bce84f013d070086f0de1066d7f480c13c02b2c
MD5 79a54ec432d66117727cb6f3d1a82efa
BLAKE2b-256 f0cd50c404f7057e4f1eb0a968268a83c5d60fa746300f3ca81ceff9fd5a6517

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 658e8322092e7447dd2de4462e81fce797391f68e509a39c407670a32451c9dc
MD5 f85dd47199aafc845f1b8c66e19aa40a
BLAKE2b-256 7e2ba0d4f8d0c538fc169a2cf7061530d947fa9de10feae65db9d595a6b65e71

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.20.0.dev20210907175357-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7b37c1f0b81272d4b9cd855689512e01f52d48a266c56c43f01a0594241a517c
MD5 cf9d6def6506c7420e5695b16bbd114a
BLAKE2b-256 e0ea4ae4888fbc87d2ce2ccabc4e8766a2c565f05ea791a58c19b204a7d4606d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page