Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ce07bfcdaad505e40ca229ba451e447502e7bb7401027bb4db7c91ce8a58a93b
MD5 2117c20e1ed0241b7ae2446832d02bd8
BLAKE2b-256 68e8ae86e16296e7a93bccc0f4b16a00785fc5441e82ff2308314086a3368338

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0118bf64694e357615b1b4bc5abbd0f333ae2021f658ed1cc32a782c52293d70
MD5 85d44491c8a4ba6dfa7c567bb6b1375b
BLAKE2b-256 d7a5954475eebafdf276ed5d50a5b5d9ab88c333c583cf052ea00681d4d06fdb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d078b1e2c6906a9f294b74f9f16d70ae32815516c5706616c6805bbc43980017
MD5 4686e10ae5ded7dc170dc8130b645446
BLAKE2b-256 11162d94a8bdfa0467ff282b92a94fe6fbba46352d996a17255953496236a9a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4e255e9e00ea6e58226aec7158fac7b03a2a4fd03a54a2eae92a6d76daadf734
MD5 c40386caa2e378806ea01140126b6d2d
BLAKE2b-256 5e0e241a5e0da6621a66ceffb07c59b61139c60d1afb486b2af97eea58a98816

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 305070b4aac478ac1c96b6be5d6e75629b0131642a746a8ce6f15ee206af3604
MD5 8e6cc151c388ec3531110f07fc176875
BLAKE2b-256 c2e78e512ed0a73924bd835050e85f00cb9d4e2cddbde88a0d79a4445ce77bb4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5e577b5df8747b25d0bec1373b932f1b2fa81995d214aa9b93a282d80f42aa26
MD5 f6bf5f6d27b41375213047a564705324
BLAKE2b-256 e82869c9dadac1ed2bc13545ccb9d519c0ee8b798433728646aca47ab17f4611

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e7a7192f1ab94c3fd697afbef96903f7543c573a06ba4a6f6e161e309ed5676f
MD5 d1756b4c049d13229959ec551d8e668a
BLAKE2b-256 3542775a08adf45eb7ce465d37d0b06dae3e54eec751dbf28832975ad0af2885

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3dde84163748a7ed372bad981c165fc9db341c75def3a2a5f8692d9e8c55d81b
MD5 94f3b5ea23d09e2ea81d4dc7b309765e
BLAKE2b-256 05e22efed3afd4c69870f3c5a5ec31db1d52f17c100d1858a59e8eb7baefe5ac

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e4bd81c798e54a0421db4ff3e24159e4fe479af61004cdf077fedf2895ed5a1d
MD5 efb55172b576457e7e225bf70422f606
BLAKE2b-256 ef42a7d96ff045aa41329513750267530b53b698fc5ff996da1827374c938b88

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 125fc3c750458854918152a2fcace65b4942666f9376dbd8c625f3163d693145
MD5 860d9abd28294d72cb61e5dfadfc659f
BLAKE2b-256 20998992d6b27578ecd2bbf3d59065566612c7927cd91dc1f28a3a32335f60ee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 db1bd1f705f34a49357a3297e34fa70935b465276e130e38afe2b00c6d821b00
MD5 a26bb2b76f876a7e0cc2820d9585f21e
BLAKE2b-256 bfe04abe1cffd3ce8d52d644fbe56345e49c160138715284d1ec1e2fa592e7a8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210910204211-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 795dada667baf86c1d065e4a46a9553b2dc2faf2e6b7b051c05945a8467b7f84
MD5 3b9e1d0d7afcb30378b4611105371dac
BLAKE2b-256 560cbc5ca6f56707c8b8f52ae1652721d448542b10930f185f977842767ff7e5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page