Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 85221f0299b7849b6be4e40f7040a5e9428ada14d3eb065f3a822b41191cabac
MD5 7a1720455714e3b2844e61c9374a4d9a
BLAKE2b-256 34bad55726bd873051a993f1190196bcd7daae6de41e3922299fb01836fd59c5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 363c3363bf0fc1b324cd344204f31c45c0cb4874079db288d9b4e8c93bd992cb
MD5 13f341913760e73f26f6b73f2f0d72e7
BLAKE2b-256 bd3bffff993581165b22d233a752c7cfdaf4d38ba88ae44ab200cb743492f9f8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ffc975c3ac9821f272ed6b568dc4a83001538087c0fa6ee541211a154066bc4a
MD5 4bc15984ac8b3423f0a9e7ef846eb40a
BLAKE2b-256 d5272ef2af417aa24c337f3df99e6d18c21accbe48125d249166f1d483297252

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e52ddfd27316265f3ceda7267b866399231bcca1b62d253af6edf82891d977ff
MD5 4febc0eb8c16b19d79191678c9dbee08
BLAKE2b-256 ce5ff3b8bf12892ac2bcaa9f6a4ad0d3a11f43b8a5b94973497356f1d1432986

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4c080c006eddc39078ece84f2e93342e57205d09e0c97056d9deca7a858d559c
MD5 ea611e159e3fa3c12ec3ee13a75df564
BLAKE2b-256 7f1c630d016830a288c7e7f65951227984af4c56c8c03186d9f1d6a0b3173813

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cfa3e5c04b0d6e18672559ef2c86f5d6fe457f3788d74ee03dc1c0043cc29d20
MD5 1ac8b52775a666f9857e8e0c17041fac
BLAKE2b-256 0aae3a3010b45047225cb2916021e155e33360870dadca74742e881315afb821

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d84ff941b31f3eefa33d262a123662158e488cc42a34a5d5e5316729a550e167
MD5 47ce859eb90d812bf3eae4efb45e4b7a
BLAKE2b-256 718e8f1bdc9a3c98cb223e5040063bb7ce280a1932b8003d6b1b0623e015fe52

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 978752aa04efb34f25e553c55ff251f20ac5c56cf6a6992e24cc6bef7fe9d748
MD5 70c65129bd0ec8d4d679670f9df93580
BLAKE2b-256 0a74f375342b06ed59cbc1a24a972d8854aded0dc6954e2f86fa4ea6c04b1128

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7450d969b2f44edfd4782d271de4a7afe7784917c1390f7ba4ff21a1be5aa89f
MD5 dedc84671d53d8cd4a49a41c330663b4
BLAKE2b-256 818489c6ebc7b66bb90c7afca2667f32daa7c6f3ef659aef92098f5de49abed3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ebc866322d702f6bf34723a2a815c2c3b17555090e56198d3b8a363f37367657
MD5 d4ef4e482a6150397c6d3dfe515d3a39
BLAKE2b-256 94cfcb39c0e13a1766581b60d061a7bc59173ab95a0aad54a9184af7e2539df0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e4e8ec4c1262f20c6db965a3d1f45f6acffa8c5c34cd5aa832398207435fb2d
MD5 2f298af2d2f8018ace466beb1aa2052a
BLAKE2b-256 30659c235921bf705179f921d422bc69953ac5c081ce307fdfa2a00456ee5371

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210913003830-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 13d42bf756674e2f5ed025d91d8f469f75c1f2bc99778a0fcbb2103bd09ac35b
MD5 ff2fe6c51de58060f328bec715e440ba
BLAKE2b-256 9fe2c398b440d0b66fd7f713a39f905e965c48d6e308f40735b93dc28ea8e5a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page