Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 19a016631130f76c1a860ceadc80e61870b1fe43ad7220dfb0115707e47bd710
MD5 5f99e284a473eb97dc95c51219ac16e9
BLAKE2b-256 44f284a9dd9b4451b69a9830e85f3022b6cdcbf9e755f9c89632b84ca67ddfb5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 171e734679ae48f38a335990f5b42cd8e158d0c7f0dfd75baaf481e1f240242b
MD5 a9ca8e726ad9c38d166448a7100e173b
BLAKE2b-256 6691733028b094f83244e5b5a4be1e4113961a769f2b63a7667645531f59ea72

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 437203ee37635f8206007af0b4948c6b063886d82867ebac5c9aa29b3f3919b8
MD5 8a1cd4d088e6aa94c999abf292c4dd99
BLAKE2b-256 92fb651a135a346e00449bdf0133cd36bc4d75f3eda42b202177712b814fcd75

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9d3b8b7cf8c4d3c28821ec05459006a43b2eb1b31eb922eae384ff0108de3b2d
MD5 9f5452b18b7ff8af3cc7344f80aa3598
BLAKE2b-256 4e0e78d7eb21997ff38bac62476a57d1046318d92a7a2ca10056c4a2860f45f7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b082d00def042cf76e9f3d8163ceef194231b5d4a78dd79b47d00365ce645073
MD5 885da8c5b310f77c7867f65e94be9ddb
BLAKE2b-256 5bb439982b9d552f8d88b3ac0668e521ea7145cd6567a83d9d81dd1cd7168295

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0749a98fce2f750c38abb9699a863f8d114f8d0fe7574df64d0f4a5023f3c787
MD5 2b90724f9e5d0e87ca904698e0eb8f73
BLAKE2b-256 c95bb935908bd9eb57573636b4324862ab45206e5d77c00eedb136c24a503183

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b9bdc1888c19ad4d10ca60fb72c74bf927a9db744a65ba6d608170e0d26894b9
MD5 4f8472f7114fa254e8d733ed556b354e
BLAKE2b-256 297e8ced8a7b6ab1920aa991cedb2bef006bc18aba730a6601231a62604c8482

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c20fe1aeae8c3775408b9e40b4aea054a1a997a2ff4c33e725a01e1918cc06e5
MD5 8da493d7b110485b867261ac40dc82cf
BLAKE2b-256 cd910a37446f5ab80cbd8d16b5f9cfbd17e31cdc56cc79393bec49bae17af735

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1e2d8fbff397b473afbe22eb4d564885d7e6d21540cd0dc44f42d6838319589c
MD5 c40e74aa26bdbd0f61514e432f843cf2
BLAKE2b-256 257d6e458083aefa9a917845d4c805a6fa7fecfadc072bab04d6f5e35634298c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7149e397d433e17cf04ce41ac25efd00f8820e2aadfab918c9cda84ebaa4c513
MD5 68b39187e929482958ef95dbcce0d946
BLAKE2b-256 7e69ad6f4aef1cab69885bda8fe0bd3f0fbf149180963f902b619daa46f3040e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d8f622053c3881b539c33d0c212e61d0924fc2ae37df2bc1575ac5e10398ca66
MD5 733d3d0e485abf92242c3aa1c1219a56
BLAKE2b-256 1fe7206d85c36fa3a37c588a958b560900215f47a75f7d13e9e0901c11a8b319

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20210918024028-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 784e467835b82c7081263828140b88c5ffec799368060fb97704b5cc9d4799dd
MD5 2b128f4fab2ab9be77ecab10a426401e
BLAKE2b-256 fe394d291b09f7fb1e1a30d98dcd17de22b373ece7e55fd841a0dfee3e331103

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page