Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 63c1b7c2a0430c2721330cd749cb1a6fc05c65610ccca1dbe7771f04e84f6c47
MD5 6602ef307fb7fb69f1275036a97920a1
BLAKE2b-256 fdcd1a662aa7a354a37d35d2d440ace8e52d9d5479eabf796f6d9e6af460f41b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bf983e572e37dd0c4ec35850008ea034a16e2def676b28b8296b220712ea9b15
MD5 5ce44020b02543fe75fb4caedfb2eeed
BLAKE2b-256 1e34116178684b2f78328fbeb5cd3845ff41c4242b66eb7b1b96e975ba816af7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 54a4b015d248ac4117e102df7c621cc7cfb38abf646a328666f7a024707ccb56
MD5 0c85e6474290cf6e8c1e159d260aa3a8
BLAKE2b-256 3c7dfcd8ccd8293a2017805c243dc05cce8f3b4649cfd1be81d679270d1dabb1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 09dca5cbc3d1b6f8fea605a421993ad8b4742f2883c299b54bd5edf8454dc996
MD5 3a3c9a2d482723d0fb61f6670fc45ae7
BLAKE2b-256 cadadf82b5b359ae2dd12e30c8e393d1c39aad8a6e202063d7f49ff118867ab9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8610b628d83df9d634a2d0a196528241dc332ee41bd74c9da77b312787b070cb
MD5 d2be6aa0838984cdb4cb526648fb85aa
BLAKE2b-256 79f2c6bdb84675219546e9f2051944cf153d32781c5cb81b2c8406e4fa6fed8c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a67ce8dc2e678f1a7eb2746686563ebd0ebcc8b628a8396a2ff1b68c963debb2
MD5 96db3f0f0828d9b185cc784c9d8f3c80
BLAKE2b-256 01976a04b325ad0a20fedf96e852f2470247bebb0cbb982fed701082a38ba1a8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d5b68989441a172a93e6ea824623f4409721043428cd315c4cb97ac7ec372271
MD5 d0f1b757c1fdbed82072da77c0c7f84b
BLAKE2b-256 e93a80059264d0433ec6364f681f801c6cc93aeecb8262782e9e9af598df104b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 90d863e357edb6ccd5661b185eeb65bcb54b532bd3173f127226bcf0505c9d78
MD5 3ef2bd3fc7552cd95defaddd061f450e
BLAKE2b-256 575ecaaad6dfe7a79c1d7e36ee49c769cc20594758e1f5fd9aca211be17dd139

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9312c9f887243553e9d1fcfa90b9bcd0eff21f6910e9d9ee65fec8638cecc2e2
MD5 7d8effe9e48cc2ddf45d23f601517444
BLAKE2b-256 9aa979cd41a3211f70eff92e91f23c8df76ebd6f32adfcefbfff6237b35a6b0c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 34005d7fcf762e31af0cee64e403821416f91bb8fafcc327ebdc484fcb45ed76
MD5 091b1c4aeafb249461c53dee23c1996d
BLAKE2b-256 69a40f50d3211fbd872a7697ad909ff6e59a0cde4a889fc624e9644d981282bf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7a70e5ee7d93ffe0348a283587d25b141674f0f677cbd2c308db6eff64d9bc48
MD5 28f085c160816b20a71260d46c0a887a
BLAKE2b-256 5d1a46f48026e86c4e690203d007fd57d0f9e354884f459de422f5d602072adb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012043643-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e0b4e974188225d6ad5a3c0cc91121bd4a60620259f6a80d979bb0f6f1d04f47
MD5 929be62c98e4401dbaf820484dd9bf23
BLAKE2b-256 326ee63fa067facf36005d24316615772b4430b1debab9d377d3db2e1d7493ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page