Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e23fb691722eb826b8ad2aa2e09ab0f2202d7ef32192c27bd37a14e9c95a60ec
MD5 8d3b5899cb5f98b894dbfeaaf31cbcd0
BLAKE2b-256 13463d809ee01bd05027378fb14d68ce97fffa0d1515ed301052e05d6e9c792b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b732eeb719d801b59f34015496d1e37d7e7ea83e31957d35804ea5f964b7c6de
MD5 d5153fb58912a0a9457a6c40bed5ea3a
BLAKE2b-256 dc6b5e34ba6dcd13ce4be288e2d16c94fa08d46a4c45e2164c27031241f8e4fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1ca5ce888ce800418df2351d519bdc25d7c1dbc048d3f9ff37cf643eda6a5124
MD5 67b7c1eb7ed172285bcc44e7beb5afde
BLAKE2b-256 2607cc063bf6492ee06182db6550028e9924ca75ddf277e0bb7f5ee4297e1e0d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9c0d967b96186e146dbd4d53518536f113b610b304d4ab8552bb7e4fa63e05cb
MD5 b4be34050dfd13e98a5befe902a11bf8
BLAKE2b-256 b7d4b6aee9a0cae72b3d252f78b69ec749b7762e6cfdfd69e232dda45213aa31

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef309402571e10591b589b4830a3d2c79c93635ebbeb49b187c4731e042f8382
MD5 593485d43faa39384d3973c5b6ad9208
BLAKE2b-256 ed6063cf3a04006a77f8b021ca0ce8739e70b2b61ecca8458058a87c0c4a5898

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 27a625f89295b850ba77381984ac69c0bb4efd2f4ce24ea4fcf7ff15690362da
MD5 aa6e626f5c1472679d9ea587e917103d
BLAKE2b-256 673559cf1acfe856fe31fe71b47b9ff2d928cf35d97489a52c0faa7b2c238c34

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4d9f4bf863c07154bbf2e9656d6dc80919648db599244ea708982240bf8ec88d
MD5 aa18fcc6d723783632dae23b211a933b
BLAKE2b-256 99a26297369de2ad58db2a4023f489bf142d8915dd32c050d919861a89eb31e8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95887e32d87c96654640710cbc5555373b1fe32746706fbca460788263981ca1
MD5 dc0a1f59f57585a76666b61667d01492
BLAKE2b-256 9867a674120a64c59c78aeaca90f7a92e14d1a090b423af9678c7bfb401bd92c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3b4ecc72b7f794d4d6b6def95760fae7996ad2758b429558525526f26de4f944
MD5 d91126bded99817aab90a3f1b6c7170e
BLAKE2b-256 a60218e406a5c3f2a81206e3f42e193cbf259728761d3274f795e10652ccfc4a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a6beea67aefa996dc23196d341eaf8884855f59bf97b9d1cec1c2fd5688e7bc7
MD5 2cc83bfec4d4b923d4689a4850801491
BLAKE2b-256 c5be319e667c591fa339fae17ac8e48118a3f51b00a994bfb1056203c7804314

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 902a0525a6fb34cfe498c2ce6baf612668f1fd373a5a0aa4800da771b09230c4
MD5 682662c8d2654890984ceaa9201639d0
BLAKE2b-256 62c1844dfdf7a75950de3876cd381f432d2497222ff564228bb0a95466607d08

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172427-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a3be7214e9081e12e4cf936492640ef6837fb9063cdb084fae0b3261250b2abd
MD5 5bb6c490a631c2cf30f42b1f64410bd9
BLAKE2b-256 cc0de79d7bfb22a6980425d09f91d8bef17cb49fb295246d00db577edbe3284e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page