Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59f67ad219500894c41d832646e81d995fb5d67011212b69f1329a80b5129111
MD5 822e5721e0077e6c9f7b7e534413eaa8
BLAKE2b-256 5f8c59372d3a83e49287e1a9a2a3d3f62336a9f4e459f28896d195bae9e5c541

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 01a9dba86eeebeabe638a40ff30daf815097faa486a9b302df5975b5198f9f5c
MD5 98d06888ca7660f41e2fa87803ee8b56
BLAKE2b-256 22cefe0b09abdeebf7feaf6a218d67483acfe3fbcaa3bec95b9c507820ba8066

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ff6398505b7bb6cf8385e9c7858bcc0b52b3ddf4e71ef106d1c4d14530ff9c38
MD5 93b5add277294310a8c7d8e3a45406f4
BLAKE2b-256 a9ffec88b51d7688c1fe235cc4de74bcb500d74bc057e28b8d09d2bae0d22c3a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 74407848fc806dc49fdfce7b6c3b6eb302eb0e0e2dd45f5f43330640943c5375
MD5 4b41abeaad4091602f97911f227549a6
BLAKE2b-256 7197359d8f3f81cce4c40e8c08f75d57bbc9bccb322255b3d909133cf29a1430

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 63c5a24ea2efcf708cb88b942f0a6f1a1c871e884a1ef95f64aefe3bd715d703
MD5 bdb874cac63797dfbd51b3c6ba46e81b
BLAKE2b-256 bab94b01d77aced8683dfea619f1895ec3e38de368183911a8d1cc59d2e67c45

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ad3c29a3eaf6e5a390329ce4b63138a13472b67526274b12096d877b2b4f4ac1
MD5 2d518cd84b1dec6396a79b2232bade27
BLAKE2b-256 9cca6b2f6915c0b1363effcbfb5eea2362c3ea1da1479f36c0cdadca1f08520b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dd78ec6a90affcc977b498398fb9997417d1773ee92dc28bf2e401eb0c6d7f8e
MD5 d0e080a4bcb2073f80b84b2bb5b113c4
BLAKE2b-256 dac3a4915fcb3a841798b02dc15acf7c38b7f7b61c16d92a4230001e9aed6c1f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b10fc02d8d318c162f1332592aa67f2c238467b3bc91621067d4d786d9c04206
MD5 d65da94b471b2baa6f0557801d0bb1ba
BLAKE2b-256 a45074fd026d26ae8d81f0d06e40f9dfa9593701f4ed987208061987efaf7468

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 211d7d8fdef59737bd52196d16691143e7451e43d952a343ae9b38a484cfeb92
MD5 f2b3293c5945bbf8df34b6872c5cc7f0
BLAKE2b-256 3953efdcf5932477af74611de278090b440e7d92822926a3c9de8a0dfbd43f76

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 96cde86065b800d4303b1330e59529f3ac5d9b6017a8183b41481ca20e74d788
MD5 8becd5e7cb295e0912a9da52716cf662
BLAKE2b-256 d7961f6761860856f23c7868cd7aa0e48346fd6ab683b80d239b735ad6e76ac4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff14aa86a8965f3b43c6cb1fc74acf9d6670937a9caf4845f91bd9146f17eba5
MD5 246927e9623a8b3ced21c02d0577b80e
BLAKE2b-256 23f790fea77fe0531668398b1d5ce40d0c0d5ce80d297262fceeaa678fefa391

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211012172635-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 343987c3cffaa11442fdfd88372c38d385dea987c44c4b0758f1772d4abd9905
MD5 0bbb513d5a77bf6498eee4982779f61c
BLAKE2b-256 916c536277abd8798d65885a22be8523ff3d80c436f3370fb4f5c258cc92326b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page