Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ee08b186e6c87cc8dbd6cdcf2a2039d1ef254bd71cd6ff792552cf2a5fa9b403
MD5 3f494dade2132182dfc842adf6aa8af1
BLAKE2b-256 d3fb03bc88a9b71b3e22cc2df6da4a78bbc37d1cf3c5d4ddb8f1db29ff35caa1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d34b6505b09180663624656dabdf7a646c1715202d2e243b9ac576b2150b1bc4
MD5 ee461f736a63d778d017a9fd2541ee2b
BLAKE2b-256 c7497e87686c608e70c0c8dc3b753d931f7e5f10c63f0bb25c8e15995f8474e5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9728fd7bda7962b85176bb36672f8755f0983fac6cd82cbfb5c9d8c1f470ad77
MD5 bd29b5e36abb7e475b9f74ad0e5ccf95
BLAKE2b-256 a26cfaddd0fd49dda8758754199febaeb114f66e5cb58fe01b68dc216f90f9ec

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 34bd82b8cd2420d43b4f379a488799b5759642b55abc42ead3dffb92234b3dc5
MD5 9a98853c8a64dcca398694a6765579db
BLAKE2b-256 611251a117d6984324b2934e6a2e4f3d69c9bf899d8478c53f72781475208351

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a86c2b1af598b0c62c3f0564b6930f31e81d8c3d3da0dd38091c28be9e6000f4
MD5 e279785b25522a7313b117c815ff9c5c
BLAKE2b-256 5a1c2aeb81db9a9f5d31c896ec0f58eb7c39c67d8aaaa28b9ba485947a067851

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0f79c75946a6a6b650ffc9b59e567850203af52b9fd896048fd7abb7d0c567f7
MD5 59f9ad0fd9f94a95ece92c2b703f783d
BLAKE2b-256 b3ce00f6d9c71ffe66e9909904568c22d7d9dcda6dd5f81f1059ea28fcd786d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 99adc57b8b847ed656b793dcc479edf54e864e1875d3208ef30a6fb8d358eb18
MD5 d1969d72cc70d56b7e41871313840ff5
BLAKE2b-256 1d7c1c13c3a87ff1a5e2119043dc8b3901e6d204f19799ff6e5407a0a05ef34f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c9a58ee2ae28269d0a88b5d4f5bed85a15b34d5259c8b5504277426b40e06cac
MD5 069c2ae6e854d16ec6aaa6710f404052
BLAKE2b-256 6667e1e83c681d0b8d33c64cc24aa1911eda19ff19669f54e9c1845c4a223a23

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8b1df05ea4bab1637526c5f767748eea17c455251863ccd3fbbe42db6d162cef
MD5 b806b07f785c5af98fda54af88058fe3
BLAKE2b-256 90ef6c596f3b6889b00f06e4c84ed8c740c5847817d285dfb5b899c4ae9be143

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ee65d8fa43c8f3fd7c6af8915f37a57d57ae47791a799a460f6b74d0749072b1
MD5 5ac071026b6262ca8bd68b9dcb6c094c
BLAKE2b-256 4788f34ef88d06701e24b6e9ed6874b545b893dc10b0b5f7332c504c06229f6b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 42c22706dbb39927907c39f14042a9fea26a62f6ea4fd65a8a9ea50560e2a5d0
MD5 c9e6ec24e132ce7915c82702a307f8d9
BLAKE2b-256 ad884de342fa12280159dd63712a568645ad94a0d07067c790ed7d16c1b0bb80

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211021134553-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f010c89288345dc6b6596259f68d57e577b48c43c7148de586b03b1be50a680c
MD5 b9dd3dbb44e10ce725766a6ab589b4eb
BLAKE2b-256 3b0010bc2a053f19b148d12a338fbcb686aa01bacb50c45375b057b93bbad056

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page