Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 223583cf67624e4b10cf077969f813cdc07ce0531ffc48a55a6ff05546f4fa77
MD5 bd6065656160323214496816dfa15f66
BLAKE2b-256 7093ca48eefcf0effccf364471e715d345bb8a34e1192a94e0ee72af0f8b69cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b101b7dd0fc591512bc3955132f00000399833ec2b16470f095bcb2b56ce8d0
MD5 11492b7bd4e5e99c9c84e0ee32615512
BLAKE2b-256 4e0cb36b1f05161253af742e4e441d8c92f3cc1cb3255122117e2f301194c7f4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f38eaa49e59b12e7489e0f29eabbdf2a8a29b7aa4024c4ef2a7cb7ec078cca36
MD5 d6f360e2e480dfb29076b11dccc44ba6
BLAKE2b-256 c2d410dfdd2297652ee56f43c609d69e614020ee433498034e4464c19263b0a3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4cef22036d44d1a0b93a2b698df136e8c9dd0c40c7c8273c4c2c02d0f8fa30d7
MD5 f729b50eb6570376f196271555bedc84
BLAKE2b-256 753495af3c469c9c04e8083840212911408b0b5b919e1d5ab02a29b826a09020

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 390adb5e6fcc30ea6866e47f237c211e734c23ba5de08b964788b35acc3eb61a
MD5 5b5a7052566b85166854df5c28850013
BLAKE2b-256 e07148f80bdededb6c0027b0687fea94167a4fc2ab9864781b5ebcde4682bf32

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a9b68a6448300ccdf756c91c436da633c9c6ad170d2ffb86f302245ff8e058e8
MD5 600021a93aca72d79d329c6b43deb37b
BLAKE2b-256 daa3a0c60fda45ec231b7787dd945061cb849fdf5013d31ba2249efcc1a5b602

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 375b2af9f124269269fd1fdd081b1466b7b1d35f50c4652aa54158d765710e38
MD5 ca2d7d06dbcabcf95bf25c24175a9b0b
BLAKE2b-256 c139784ebf5aeb1d4ea156eabb5a84fd9ba9dd3422bad4d2d3fee2a24dbb81bb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2956a68c4152e0b0ea1f4800f6f5fa58917963ddb0bc10a2aa10af42edec9dbc
MD5 96ea812c4838dab8c8c0133908d59054
BLAKE2b-256 2d728bb4b170b65831b4aafcf6e50f0a3d6071adb9e628fcf9e299c8016f53dc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9cb61b4f08b991d0459f9a2dca52b32d77d8a98e2cb5f1e941efe5062813a6e6
MD5 86dc827797cfc170b21de4a10f8a4e36
BLAKE2b-256 453f6d266ff4f3047cb04b4318bd345c6d6e56dcbe202355c11dc2ba5c4fef07

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d9a0dcec0430278b972e1ef5d33f07b64798ec1a64bfd0ee84e90f8cb06f3cd6
MD5 2eae8a7ff86d095d5647a666394654fc
BLAKE2b-256 ab818fe9067755a19763705c80f90d74ede82f098d6d811b23c8c116dcd7ffc7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 64c24f906f33f24aad8ab527d97134efe057572355129ee17e279a0def11507e
MD5 214be62c1305a4293800ab01d9a9d6d1
BLAKE2b-256 163d3ff42bebccdffb8d9c9cf43f2c53a5ed6ca45c2a54ede520d7c1ee0d8810

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211107074504-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4b2034f5f65f4bfdf82afe3b5b23f9d376df66b1258f91ef6dbbc736e1261c67
MD5 972fa41ea4be63b5eb7a0bec4886ebef
BLAKE2b-256 1bd6ae571e0f0db14ba6a3afcbf78c729cc31af00560421fc688f9c6db41ff81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page