Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d2b16950e1b3a4f88234adbb8a65de60d07ea1e695ace0e2740821303aa6f901
MD5 40236eda616e1dc71b5a921a14919eae
BLAKE2b-256 fa0844c99ff6651778e3d8958cd74f5d1caab0ff9e4c20a1686b7c129f332c19

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1b4c72038ea356f91d4d56d820274e5cc22ec91479d8b5c25f9c7cc567400c5e
MD5 4c86ef6e0ba1caa2e26d300e132d0e2e
BLAKE2b-256 c6f29c1e16c878efe6d746b713eee3d8fbd13642fd86b7aeaef8ec840510d127

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8644e5b74a3387412f32f0266e07d76527177c06b5dd2e9addb0ebaddb695edf
MD5 86bd3fbb0bfdae18b9609a23064b91fb
BLAKE2b-256 87491de52014d526dca254ca96a8e1f9f9cfe8c4491ea149271c57dca1b6225d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 989910e4f294061bbf7987452a28efc7468042a87726c84bc3de536ed046a3c0
MD5 caeb0110a48134602c608d82a53504ce
BLAKE2b-256 f5b1fb38c3b746d0fc5a81679c8d3651a4f69abb119e710b70c39f482e7b8b10

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1e1501d25d6b256d3cd51c6b7a529c23e16114ec171a23c06963edd6aa6e4376
MD5 e2d1762a1a364f4203237b053fd9a89c
BLAKE2b-256 71fec94f27dfb5fd90e2bf757d1b1d0981f7e66f312db6b35d330b157c395dd1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ca9c3fcb7165d1eaca31ffdc7e3ae3703e18fca37544bd6525f6a747654aac8c
MD5 49438dd97105c996777bac218b7771bf
BLAKE2b-256 238d12b9e717950efb264d7d30878e772011a9358faed3f07ad2843c5f15a8b5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 22bc4478e3e79760f034b30282bf7ba81e276ba1d085a6078445bc28551ccead
MD5 56a447d515f177ca01d5a3ea84eb79c0
BLAKE2b-256 0160facfd53a94131c6dac63188ef37318c1619e96baf3e1f71a76eff694ab16

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e4ebc823742f7bc23abbfba0787eb30d17b2c6892a6e8372f47456396e38ffe7
MD5 5ca6c6fefd6582062892353ccf86f354
BLAKE2b-256 d092572ee2c67001d72ef7f6df975a8bf8c9a08a1d2100377480cdcc4f27a90d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2a482594a8e890fd7ff430bc1f6a5ca074c27d565ce1868a8ad2c6496222fa10
MD5 5efcbf4e65ae714826baa32c3be38e9c
BLAKE2b-256 cc98da711ecb0a9409de653c6d3f8c4f6534750fad1be96256f6d45dcbe4832a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 47b2bbd67cd7b50b9f9fdf0e5b1e48bcd0e9166a02d4541c42e3456e79339981
MD5 191ae004c0c7fdbe3d4029f075c1124e
BLAKE2b-256 ed0ec4c9fb162b297a8d90821b7d97a8c410dc86ae68ec6da6e634408a702414

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ffa65ba307def76f0fa2365d28cee92e4f07101f604c7ce582b999a27215044e
MD5 8e9d4ce2128f6a29feef71c5e2259f43
BLAKE2b-256 79af50b7851e99e43aa0e0ae26ede4bed80c466b9e03c11d2be833fbb721b47f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.21.0.dev20211108060603-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dd149082403ebe5f7f361efb2847dd8b6cd9e4476a9676b17bea4d3cc72f9f99
MD5 b8c3545624b0c1b806c4f36c855172b2
BLAKE2b-256 6834c87f610be930bb9cd4dac46818394f3b683a1e791c202c3910ba42eed712

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page