Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-macosx_10_14_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-macosx_10_14_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-macosx_10_14_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a39f45e0aa5f57eb51b666a3c71d48f8e78258c3b357fb5f8b2323d81d100432
MD5 9bd4e1f284873bed1c6372f20628bbef
BLAKE2b-256 464846ba3c00a13b3670ee0964e835019ee5ee2f9eff36051d6c57ab8476c8df

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 48c28723ad08f92a1b9d71d7c50ef88a326a48cadf2dcfe1b18569c24345d464
MD5 fb935f3b4a3a35e9e8d150b570e12c6b
BLAKE2b-256 33f037d1686f2784607cc818e8009615a2878531ae46ef471da9f36aecc3eee6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5af2d9d3a514e6e74eb2e0a064ac26aa81784027619067b3165426e22a491906
MD5 1f84fb92ad9f39c06b0418b78d892029
BLAKE2b-256 7c88edb479b118043e9f547138b4955e42bab1905dafe441e7c715c1df12b06d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ae9f9180f203d92ad9c7c7e0ef1b0be534b722b76f9c1303577c4abb268cb9aa
MD5 c681d5b82cef63bb4163ec2fb611dd4f
BLAKE2b-256 b340d1fb11abeeeed75184b248b5d6e0899d63265321c1fbd21766e08507b101

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d50c08af0298d56af4364de5af6b1937674ba81810ca6fc342ce46b7dbe837b6
MD5 af331c74cea7b75ef2966a69e0faa536
BLAKE2b-256 eea5b181138d27f4f8103b3abb03eae027aa7a0d7f45c16347aa3c6b09887f65

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ff425a5d5b0eb8d79f618d446f4102082bfa9c7ade9a9acff5008f10573eba4b
MD5 3bb8c81aae1dd7d15a426db6984f92ee
BLAKE2b-256 709469926a21f244798fc8a0b0ab1c9614af7e9d97ee214fb546a261cb5a33d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1bd103ea2636b6f23483efab72d7e49383f75f99f3dc5e11fc17e3e1445d66c0
MD5 81f4b8eb613c76c47938807421e4faa1
BLAKE2b-256 78fcc5c4c585215413394c055b0dc5f98008fd91eee0fbb0014e8b5ec3f586f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 587796fb562581c8b5690bc36c6725a776ed2baf9e21100c8b62a8ea80a6f81d
MD5 fd75abc63d7eaf413095245092e72a9b
BLAKE2b-256 4a4a7b4be659fadd28fa21d4f7d291c19627f08bbb365e65ba3a864975502840

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211114111205-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a56d6b19305e2f1b6e9996a86a7baff3c9bd166def4b0964660ea7ee3b77dc35
MD5 6f6d1451e442d8d3e82caf8cf22f1904
BLAKE2b-256 652a55dc9acf0adb87fa28fe29e0b5709c1ea935cc04ba95969481d6d1eaad2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page