Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-macosx_10_14_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-macosx_10_14_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-macosx_10_14_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7356710225b64dfb951e23314786938b25befdf3f3f94ae2af3262d233a7368e
MD5 26d2f14f2c0f787b39fbfd4c8ec5c1aa
BLAKE2b-256 99fd6406c309e3129b93121313ea7920ee8796184b8118a082fd5ea56b75de05

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0228d9333ba7aaae1b9dfcf67f5d6153bfb93824ce411e4bb206b9ea3c4123a4
MD5 f55b9ab8e6fffca3fe0bb1e2cbfdf0d3
BLAKE2b-256 04a074dfac034822c18b9dc34e7c795868c71b35802fc95b4b7b01c248f82563

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a1fbdc744d744a0dd6d04ed77057f67fd163550f7cd455d5f36bc20f3edffe9b
MD5 d470609065f0f6a2547b48bb42a0869a
BLAKE2b-256 26e17a0eaced37b0d52a5dd96a1ddd3ec9f0a583080141472396c150655158b8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 583a288d6298fb566a3b54dc2d6fa8f143256cd831cf8e0ceb8a666b4de1299f
MD5 d33c9845dc208753bf6a155bffe76958
BLAKE2b-256 ff3e8f12d910c17832dfc412ab9d9f18c1fa3fb256b54ae610ac3303ca21198c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 85b2c547eb8b8bdc39bd0333dfde22c47a84b4a68ce8d98db4cf7f9fb940e83c
MD5 7952e4777fa3a75052ff00a714331084
BLAKE2b-256 27ec26dab39a18cea33b54a3ee9d7f4e55e93de51a4a57e3ea89f157149b872d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bf32dea0426ff49a1d796e7a0e6f336e7f2a5874043713e235cb73860045f0b4
MD5 dc41fdc5dfb402e7832d602920cf1faf
BLAKE2b-256 8c6f18ca9682e19bf0994838cbca0bc629ae7dc5689a7e28265a734ab39e7a74

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d81002e25d955435b1246f47c695a1aa58cf6d250ae325255478053c2a78571e
MD5 95f6b3d62cf62bf0784b65b1ee747dab
BLAKE2b-256 9136e177003c6dea929b72dad4719acedd4cabdcd25f708b1c2442722e8d5218

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 31a62bf6b4ff7a71f9cb929551ea7d4953683ccc7d2a4b488eef2e656c1067f0
MD5 934085a53958e3ee7015f5f5fd09915e
BLAKE2b-256 2445e35babc94a2d6ee80b1aae34d91c6431682dbec84df3bbc9393e76e8f6bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211120070401-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 68a81e2454dc436c476ea9bf861f708b3ef73904eaeb300bbd617695fdef523d
MD5 ae826f9832c961b7b6b81744f32bb4c2
BLAKE2b-256 0fa273deb458e58af2514ea54c3d2733ec6019b423a3900ace5c010c77842271

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page