Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7976c05b0ba95d4465b9d4e55e9a652f2bcc555e7002b32e56e509a1cd58593f
MD5 ed49943968ee1fc32e72a85db181801b
BLAKE2b-256 6b6d07846777d05505dee42d0a8b36a186d7dcd07e9ceac1ddcc009878f781ab

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3fc96edb5a9c71d1a41cfaeb9abfe4d0410a61d36f47725887965c70d112ee97
MD5 07bb9a970bc53a9cd2eed1e30229e13d
BLAKE2b-256 b6c3294c9c2d30dd9ded6bf98b2430c379ddf0485a27f8e277ded32db98d3fdd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2c27a3daf1522b64fa68120708c21a7d27d68d5dffe3edd1c3285532d418d3ef
MD5 e3220ec08a3e13316a7ba6cf49865590
BLAKE2b-256 091b5f52638972c06038edbfd455e13b04b57f19e798bac235e1328b77e5a7f5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9d7609d00514c8f51c8261045a8eaadb2c8de3badca045acce8a5101ffe50759
MD5 8d1bc248dfe80de9510ea469f1b182ab
BLAKE2b-256 b05fde18aa2f997c2f749f42d719d7b0b74adc0d60ad300f15da29252dbac98e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a786b5f679f508aa2fc4ca9cd113285cb06b27412f3dca91547e0cba8f9fda55
MD5 c6c91cb8a5196dd004b4d6c103c27cf0
BLAKE2b-256 705b092f9f925b117a1b044edcaf36e414e6deb2e33c7115afe42cb462a75fd6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 07c70ea16532d82f9e23b6c4a6dd9097754d0fc999ef42e264295b08f3f1da0e
MD5 fcb33e4ce938b13543e7cb3d21206aa2
BLAKE2b-256 9dc00dae5aff06055918e9621fcf34cbfc1cc08152d67e800074a7699101d128

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3fcc1e76135a44fd48d6a55c1fb88854d2e87f3a1e5c6ded349df5968ff12c6c
MD5 a0083c33fdf9d83bf9028d3ccef4cf86
BLAKE2b-256 1578d3ae50c1980bb1af81fab3a27d5205d03b21a0c17ea1316477c995307275

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5e967083411e505600c95ef2ba82565df5cd1e01373d20bf58457681e09efb8d
MD5 30aaf2dec441a5fb19c77e3979328361
BLAKE2b-256 afffc5d6d7c1a1bd4e9dc497ee5a4614f9061b06801d895ff501431f3c750bbb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 074819ed892b8aa3ad38fca5bd9fb359827a05dfd4bc21bf7f36548350ba2316
MD5 7d653e977d177801a62ca301ff2de37b
BLAKE2b-256 21e822d98ba30921a1b0ce0d859d2ecf5681ab36e30da949320381ae9a62837c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cfea0b42cb16dd5bfced013b41cafd4a89a90e5ed35dac4be9ab8368dbae456f
MD5 f7e65a477efef13a12f36a55e5a0bf36
BLAKE2b-256 f840ec2981a3de8370793e89116829d9aba8041f5c8d34f8f29baaf48ef8fb1e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d12375c30cc888f19cce02488faa152d8eb9740fdcb3f9ad4fd976054dd425ef
MD5 3dddd0a6a80390457c9b010032a827ca
BLAKE2b-256 9eeb459d54214a0b847f14d8789e840153f233fbcda35f90e55dcee0ec54982a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.22.0.dev20211212164457-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 566b4279e256720d03ae3f959bf450ee6ec4a5915e8c06692c8fda0c99e53946
MD5 177977a754d84c061772879d9389804e
BLAKE2b-256 a02a69e67a8ae9cf249280a9d186d5d1de534db393e6d473778bda12434d9d3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page