Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8edeaa87b929d827968a578dfc06230a8b3cebb8f6400b28e4379cae6029b1d9
MD5 bd4ec7690775cac033ff551647fc9b98
BLAKE2b-256 2cf65613ad743910b840b663ca89d9fa96d1156de425559333ebb9d74633b152

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d2c7eea4a43e56e348ca1bf894f2291b3945527c98afdd9e0d82cca0fc31f9d4
MD5 c463def42a46880b3a29d062e95ab3b0
BLAKE2b-256 c4fd5eec33d2f2fc6f7c2c343870fe1edc3cb68521400233f803f65739673dcc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2960c5a9c79ffc98747df07154dc408c5acc79795c5f6919dffddc1f2bceb215
MD5 40eeec223b67ad9f4a1607d5202cfcd5
BLAKE2b-256 f0c4af9544ed10cf62b272f803333cf3206dd2595e75464b4ba7d02cb7ad2acf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6ebde18d2f71acb3aba324c88c164fe04023beebe5efdcf968c70a71d4336e46
MD5 f7f0408b17f1c510cd3b6588c74b3c55
BLAKE2b-256 a7a745e830a33e0119d5dfb0a28c9ca0f6780924bf6bbb2ae26dda71e4b33759

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc1729ce78de44027db6cef0364d01cb08bdafb32962312bb7482ff4102282e6
MD5 35fc451ea580ca61cd3350535f0b2e82
BLAKE2b-256 214de321c563dab8ab2bd4a4f07c5bf1923ec0770ee6640d1008ebb55cbe6980

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d5421aeee820f5bd50ee533f27187525405d6d3f655a1d020b2931a2d642b197
MD5 2d5d23e5687eee24e730bab007d84122
BLAKE2b-256 6b54cf785edaff4a387bf36cbc05cd96537ec0e5355f72e07aaadb3382344fbc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 21454f720e46dc798214255a45f2550e9c3a4998777c534d098a9dd6a6256d65
MD5 7ba9280e57aaa5d9b4f73d66b6b0bd3a
BLAKE2b-256 c44edce0cd423d4129d85f024fe12d0d4ee40c04337a1ff35fc6005a38191a3f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba9a67d19b9859e606268b6c30d8a5f13f4abcaaaf35e26646e27f2101e68b39
MD5 4ff542ca490abdb958de24daa6363d4c
BLAKE2b-256 73404d46ac938ebb7423e471f853131041ce291dfc7364e504d1694d88179c75

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 083e52ea4d4d9276243c7e845443a6aac3cee588ff49b1bb83c59041ccc433ae
MD5 810e1f0e61a799ad62653e1879c8b3de
BLAKE2b-256 4723c4e8dee21d622fce6fc1ac139bdd30304c7dea32f0b98cab353c6d191112

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c46e51392d0fe17d55d516f2639eab3dc1a0c234ef74c2b3195bd41360494dd9
MD5 9739c7690020ba874ee2a41f44f21f27
BLAKE2b-256 cafa37aae5278e19fe878eeaaeaf76d9e9281a81e64caa4c8d544f1e6c31d820

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a72c3b1bb6a28403150f17bc36cf67fe3f0df586dbdea193c4a7b005d6b188fa
MD5 dabbc3432571e5461f7986ae9b0183a7
BLAKE2b-256 c4e4456838ec7ce86de8a0c2153dee0c01be3b9eecfcfdad4cb13d8e54216ad8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214021907-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 822d52b6754a65b28a0737d03febd6e2541a540347f60b3696bfaf8506512adf
MD5 2f1b8a1146700069697cc5f832d49b5d
BLAKE2b-256 45872b61bdf0d9091eec2019fbf4ce184adad3f7679fc2b0eb58c2c3c7cc2a84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page