Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 55c110ccf60c7c99128abc5717097685f6674a7d811e4ff54b0e7ba2fb135238
MD5 6a8771562664c91144804d9ef6fc89d0
BLAKE2b-256 c9f5da7f095c6f80e1cf853df9e8df080b75b4c59b88c15a720009f8dd48d1ec

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 56a9f96ef28c6eaae0f355309e5ace6e68e8a87c889ddab79631f3c5003db5fa
MD5 2e052566e23502b8ed72514ee774a615
BLAKE2b-256 fc5217fcb801b4504f38a2f13360f34cb834ad3ce507b9ae4a1926687a87c409

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 afd632b4c8047e032d8af20371aac23285dd099cc26024f6dbf1eff2cb9f3708
MD5 0d87fc6e0783d90061f702177ffd1d1f
BLAKE2b-256 6d1753bd04df185b20a0338a8523b89fd9b382ca0a7b80b44baad94e47291287

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 84ae047cc0689ac75e46c5a0823945ccc801c78b41e2564d036161a50532eb46
MD5 283803021fa51fcb343b61172d155676
BLAKE2b-256 83748657d825864e36358457720bb2de3e7d87051de73ae045941f86d789c58d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dd7503d3e176dd790b5c5bd02da5af6a015b38bb11eebea3fb0d7179faf22fcf
MD5 538c09c920808e58a2f127f96c9640db
BLAKE2b-256 509619a74390d9a6c2f62bec53716a20320f26734397390228dcd544fd63735c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cb8976764434794fa34a5cee22140b9d065530f5677b22448b04356d13b74ec4
MD5 7f4fb307c9c2c85e5cee85635fba47bf
BLAKE2b-256 d1b03578a8dd01615018596cd323fa85213c5ac66146acd5546e793590555269

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 24b284170832325789eaddfc5acd896444ca37434ff6d4b431dd097189bb487b
MD5 b2b5d22871ab7c81dc4c25b8d49d716c
BLAKE2b-256 72f88ce1fa6feadc05470455192c9aa906f6544b4df38709d4c41d24828d744a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1cc343230191524ce29992ab5ed75efb6116ddc0f261f275084f15fc61fc7239
MD5 41aee22bc7299cb2e500524075eaaf44
BLAKE2b-256 ee8c64175ccb9c6eecf94eda1cfacf6fd37669815a6ae8f3fd020df5dc05d3b6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ec8088413f032138e3b6696ef4bc9eb426b74e83a8253b86ef0e81c4a6025e6f
MD5 032f0f76b8a1c6da8be55315efe1c862
BLAKE2b-256 37895b1cc48d0bf4f797367add66a19f17a9d81f8b508dc725cbe69d84d2c394

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8449579aa0a5edcaa1607137038db603f097d58c28f5d3ae5ea3e2e2200708f2
MD5 a3abd07c4dd6c5f0a4c8ba2224d0828d
BLAKE2b-256 bb07a1586ba8bc6946be1748ab6bec1fffa9affa17b675c13173f93925fc700d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a5dea6dcacac15255c0f5bf4f30966b3fe1e1965142ba7421d492b5496ee7045
MD5 5302afe982db8ab18ec9bce8ed5cdb6a
BLAKE2b-256 d72325bca51b25a1336250bf52378bc219e9580db255a0aff2a1d68e83d54318

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214084259-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 19599bb4713d04141f4089a2d5e64ced1de389320e2b67a32b6478dc893ead5a
MD5 94b8372b9905a719226d065cf3bd189d
BLAKE2b-256 3ba38b09729dc8ccb25948fba5811bbe7ae67f2a47fe69bc61fa351666a7386f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page