Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 61515fdc36784ff4cd56fd64fc56152b65e81533be9cf2137b1ec089ad7b087f
MD5 6a093aa04248ab443396bd92502a6a5a
BLAKE2b-256 ef5cb2c597b99911b2489369902eeb96700af4392a3bde8bd3100720e90ce600

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5fc3a615390b93731ab252c964f9d26bf9a9ca1b7d85b918f01450dd4721ac8c
MD5 6e20340235e74a5c6fd8272dfd8b2b79
BLAKE2b-256 c24c8a28562232d1ba6db77eb757217763fc74b189522a7afdbf2d3bf1a6b3c7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 019ce0c9c5a14621e7b5ae1d5f2848de1c1b048b4a8178e46d2b1b4ad56be0f3
MD5 70fd28495dcbeac6fbc5fc2f2535fe03
BLAKE2b-256 6358fd22a13edc29424da876d28734e34b0dba4aaf3b847ffdd824cebd23f5cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b2a07c4e4b9c3310bb83602f54a809703f9ad2c0b0b9f3e1537bdaf3e7bfbbac
MD5 d400112bc5e16a0d45b9b53be6deabd5
BLAKE2b-256 8d3179433121b7a0e18d8df20d5a7a44e36b3a83631d16c5a69af1f74d535582

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 296a8301eb64d5aad45b5657726f0905b7744a2a6704c4d82943aa5a52ffa74c
MD5 11239eab6db58c882cae46ccca5df8a9
BLAKE2b-256 bdd4708fdc60eb614a86a228b273d4a38ae407ddc8e42216aa91d8577569ce40

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 de1a1c1cfa7d0f5166c04a1872b3ad0172b43ff773c74372a2d4f84bcebb096b
MD5 aee3875f68e387057e2562df020bacb3
BLAKE2b-256 cb7fcea690a206b29b94c9b62fe253b430f377ddf883057eec4f3571444420c3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bda57fd1c0cddbacf4c3a4638e225d3874539444a4a2cabc3be1be4a5326203a
MD5 3f899fc86d123577bfeb65974a14ba9a
BLAKE2b-256 9eb00a064ae1e857147f84ab45050bc012bb44f1ad41030bd762ec0cc5c75299

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fabde9349c0e589f48e2ef1ca07ed887a1c311dbd483d2405a2277278f03a3d4
MD5 9eefcb4240a6d3385238e96375ddb220
BLAKE2b-256 fe3f78c2d02809b6d3133b117771035978b58f8e4b5bb9fa119c9d15d18d7cbc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 49e8497ea98a33b1a10cf7ec8e814a4d0fe1addda4ae69ad53b659cc7497c107
MD5 8f57d72eff895fb62583717cc1c4ede1
BLAKE2b-256 48edc3e7e49a92182f334dca0407dd05d977fe646dfd76365356ce0ea1ddd350

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7446005011f0e0a224deabda05c1e29588b35adfcfe17fa9394169c9a6c8abb5
MD5 e679f8e17b760562464563352019c392
BLAKE2b-256 822f7b5a5209ee749fe70a1b94148f87bbe5bb6ee61ce2c002eda19b7079a0b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7c63c27bca4481d6b5d11b4b031f7717b61762484d8550749722d9fb8d79b03d
MD5 e8951003c3031c514b5dea47de198a28
BLAKE2b-256 ce2fc321971cd5932d5c315e21a9e552bba7797c28d9be6920016bd411fecb2c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211214202800-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 87c9e761f6629b0be4c1bfb9681747ed19bbf9b6899796143468aaa039e8d8bc
MD5 ccb005f2fe411fdc01be9a068dc5c236
BLAKE2b-256 bf2528836f1d00bdd7851324f445a9517b6b30f6d75162fc881e0de81ebb4986

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page