Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e7b72fdaa50f53edcd523213d4b9ef997a6f405d5d3d4e5412f5123d14472529
MD5 a03ded7ddd8b414715cb90a9ad372ee6
BLAKE2b-256 7bdd4eb8d6c7068fd22b1edb7c2618c5a9a65117f4cad84dcd4acb349dc7fe53

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4ee7d8d1369047e6e441c43655180b440477cd6d5622295f8edabb7a90ab7b61
MD5 ee510a42b64ee7a08a1c317b83a9a37c
BLAKE2b-256 0855ad322e54bd5580d290b1afc3faef8460d09b45e02a3c15d0e77179a33294

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 191587363008ad5a8ac81731ba75fecf8b92c6e2d9168deec1d50e658df82584
MD5 f2ab16efd65b8c1c4419d74705349301
BLAKE2b-256 0c7198d27ed297400dc073dc697250170cfdea9906edb9a9e199d9e7c90cad96

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3867c9f53e5eea8b5496795137e8d74749c0e3b3d8b0650b93e041ddcdb7a1ef
MD5 4bfa3893f74cf88e362d7eec1820523a
BLAKE2b-256 11731c11a089ba70d9e1288a96f9f9b786d684369b81bad0a5de00d7b29c5f71

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 44abffa27c079f54e30dfc207c858fab9e7795b2d181446d5f5dc3a1c8cc75f2
MD5 bc5baa15c2e86ab37b82a309d8f3fed7
BLAKE2b-256 24556e7b43e69c52bcccbc71204738fb9216511cac84cea57b3f2753d6c54644

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ccd8140e8a5d38be09677b12dd7d8907bb730068e907029264ad6c7bbc2e6cc6
MD5 71fe4a80a9810cb8c346371b694e3069
BLAKE2b-256 5e8bc2ed9cf1af5423709b6ec138468af9ab48d1950912f7274279a2aa7914f4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cdb65330b610b6819bad4b5da2b3ff5e718d167f234c2b57793c4221459f06ef
MD5 e633bff0de389e446eab7fed80c5256d
BLAKE2b-256 58fbb6a2806213fea778978e89dc5f970b07e9992876799c37c86de83c13137e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7a3cf670ab36a293f740fd8cfddcb7951d5316b4cc62aee95b37b30785482198
MD5 555b99e94f42de60724f35663a089401
BLAKE2b-256 31d7baea85465f763bb732824d781cc53b38edeeaf18a58be69a57018ab201f7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9eb2c47e837a3c7c53ff132f49a7bc93202454ff313d07ba3b9484499601b8b3
MD5 68d90bf1ed29ade1591972a177ec5e1b
BLAKE2b-256 9f94cc4221768a22d10880804b3f41a238a74bf8f0bda21749eec25242214966

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b2f1d9bfb28c8474438a8521688bb94668278fcfbcb257a34c7759434bf1b2c7
MD5 35fbc2f51d7ef88ac1d03a4cf5e7c532
BLAKE2b-256 7e161461be51b860039f9110c22d4c3de09656cea65ee43eac37222e2d74e642

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ed390022d48d5e0da652b3eaf20de4f6edb9a74d586020d31f40c984c91e0748
MD5 c4e945d02c9821c4864f87977f75aa2b
BLAKE2b-256 6ce23214edd2635ee62bb98b39abf5274240a8957e81096320a3531c32ad843b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.0.dev20211215013123-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 df2d0c1baca2b55cf3b8983960df16d95ce629340b42ae9cc93fc46c5045d6a6
MD5 ae3f04c4570871375e39d7b3276c02d2
BLAKE2b-256 e52371039302f6a957acc67b2000d0e46b9aba860449c81d0a51d1a501757c1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page