Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f94c1ffc2aed73b0117f2644b0ce4259798998d844da3f767916e556499090b9
MD5 dd9492cb245ded23e0c85b3a1def15b9
BLAKE2b-256 c4d2372dd5fcf61dd99a7727b1183a45a750d1cc6c900c74e47ab46a86e2ff38

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 17797a01e451f0912351ea7db4fc3b4795bd32844d53b0d0f801843853d6978e
MD5 daf6630f28c5cfe1b0a88753d068bac4
BLAKE2b-256 4b4ef86068a4f5c1a3796efd3f5daef92ae88d5619ca4d9b62e9e24fb3ff4532

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 913e28ce5f536b008376b27e04fd0564e9e1ef5b7c2e88104fc905fa757614ce
MD5 26443c61163b984c163ebf582efd0e6d
BLAKE2b-256 7c85ccf2a0d620a3540fdfd9846d68192ef8229e9f97bb2958e3ecc20f85c64e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ebd28675a3f0ac754e5b3dd832b39a07c35752635a24db77efb5b2cc73ff9193
MD5 f6cf44bba80f09f1ef5091bb9217399a
BLAKE2b-256 cd0fc6ed562676793c8ef9c4c8ca5b803ba1623cdefdc2040e887a4ac56a6504

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b59c1453c7213b42270117a10767c7c01e01b10423e76540f2228862671e76a
MD5 071bcfc6091a4882f8924dc8da49617f
BLAKE2b-256 c181bdc2c63e3e417144a3415adcbc181a5f9d178ec699d9fe5923fc74527570

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e01c63b5fd4876bb5329f0557031e79250b399f8244130f7a389d3e318689894
MD5 b5ee3c3487248b5f3aa7ad90ba3efa57
BLAKE2b-256 21347cdcf37d105998c5819e7c9f2985497e2b1207f64d21589a8e43d9e5a4e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 44d0aac5c9d3cffd2627306ae6078f04d8f3c1e28e1ed7131b83d8e57148cfc7
MD5 069b13540ccdd11237ec90359f9ab01a
BLAKE2b-256 445220a06531cdcc6569ecccf207d9159e2ae4d10d1574c0ce1675d0451631e3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5a7c534ee17ebf52d718e894ccbc8d5db48096d0c0a6e7c4b0408d51d360a2d1
MD5 ecf69596f4a6dc63136dd036f15cc3db
BLAKE2b-256 dfec495afe5cab7b80970c17c49128e4cfbfa233505392227fc4a2485cd75e08

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7b4f4c7f224dccc418ddb22b3dadf2c42325bdff9170966063d00feabb3a8e7c
MD5 20dad32a229702f1ea4c70017e10aec1
BLAKE2b-256 b39e68e8c236d1cf1fc09e14986c3082d43ad0e7c936d14e89fcd589468bd643

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ef571935be9d585c14c31966b47a23eb7f4fcf3070ce8441e344f6cdfd243b63
MD5 3cbe9d103a910627e165931675dd94c6
BLAKE2b-256 d3e93515599bf0b714facd22e01cb8d1ec08e04f8502fc98eccb8ca0982bc750

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 12d2f2c6cd76befb6c7128045e9881add4083e2734db6a9a082c3b97df378c68
MD5 b26ee54d7d3969b8f8b5ef2516741be5
BLAKE2b-256 cd50a3436376baddb372315fb3cfccea97284019a4160684a71292a52cbe412c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.23.1.dev20211215202004-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e13215f9db318a4b0dbdcddc07f404739d6ce5303a2588fd32d2a7f951ae4019
MD5 23945d2c3d5aae959ef30febe9942b5e
BLAKE2b-256 2bf8463f6756db74eda91bc5f1a9e44669664ebd292144256072b4702e9739bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page