Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-macosx_10_14_x86_64.whl (23.9 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-macosx_10_14_x86_64.whl (23.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-macosx_10_14_x86_64.whl (23.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-macosx_10_14_x86_64.whl (23.9 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7aed78d34597d3f011b5616ee9e309513c96dada178963a9d31f7c3dd72371ea
MD5 d3500f356d1ed02bf3ecad34b0d3c621
BLAKE2b-256 540159b71ab5507c7fbdcd539c9713bb6dc3a80d916131a4494a5195b2387d8b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1f08adf6cc13d7765c35384b74f10736aff37491db51e870e868c78821515dd1
MD5 5ed11e5a1f8cad0a4f1a92964638e0a8
BLAKE2b-256 56b0ff62b77ff6cd63e580e9f6871c30838425bcce4dc109edcc248d333659db

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2dcd67672849a9fc6a67f02042ef40a9f9cbe47ed1be0e2ae65bb9ee79a5685d
MD5 eef11ac6c0bdf5df78d4761a118f2e8d
BLAKE2b-256 17a7bc4dbd8dd54e3b9ebe6ce3cc2ba27a3bafdefb233f5bdf9b9e405d9780bb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6ec79974b95ce6bbed1f298d2735aaebf43c26ab623d0ea13da4dbf819dc4ee
MD5 f0c6da01608710e4ac9ace1e78161548
BLAKE2b-256 67bf1af8415a23e05029fb2faeeb5c8659df1c48373652ff3c153f2f3bf643cd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 52ab1d144122fd4b290397834ec2b548434d8ce9b3782273959a88f507c4ad94
MD5 2bf0b681b56256f9719bbcf977237a51
BLAKE2b-256 e45fb393f71cef725fbfc927c38effbfb9562341cdf450ee55e1738859e7c72e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6e76c54ea8776d2c860c75db1962184d553af1f31e5512ad5dcd82df0056f1c6
MD5 a9331a42d1917ab4c15cbd70ee25ab56
BLAKE2b-256 9b77b9fa49847dd62de56c8ea50350e363dc88288a523ef9c8820b161d689f15

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 689724c3db4e00c97018d875329613380f1ed989d8c39254dfcf498487c49b00
MD5 745ebc3abe07315f7a5af58721910d56
BLAKE2b-256 d58ec47d452e4b8c211b06870ff2d68af0a1bef99faf86868917d0b4916d9eb8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d273e8a2a886fea889409e0f2615b98bd2f3304096880838c0f3c28444b6829b
MD5 11d88df08b6ec8cf33c019d93520951f
BLAKE2b-256 5ecc4a089e6eb647d6297de82cc3f41b6da06c4216b9b564c0b17e32db804d3c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 63184fe969155b859ef9ee60d31533b5f7d4590c7b03251818e02c23d43c0542
MD5 72c027b1f117ea0cf3efac03121a13fc
BLAKE2b-256 bb4048d21a5b6bad68d895a0ea8379b8119f7428adcc46095e74b4d7806cb94c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 28af674108043f027358f839dfa14c18d98b98009d1b0317cfc852b89c1dcf60
MD5 8d89d928b865dda248aa688693ed75bc
BLAKE2b-256 0aa22ebe9909161f64fa4de33446cbfe08c960cbe549d9cf411b195de94e2be4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6275be2989ddd78665d9ae0bd74302643cbfa1e27559438cbbcd3005e433ce3a
MD5 1abfab2f6ff0b357c7b4dafcc2ac019e
BLAKE2b-256 3a9c6c05b1202ef64a37d73a17b4d92bb77368883b2b50ec1159aabc919f555d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103205128-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9fef0502c78ab6ac5c73cfd23c17c79878c787f62ba7577d84f2440620adfad2
MD5 097bb155940c8647480f0e358190b14c
BLAKE2b-256 799e0b9c1d1a0372c62e6ed3a3b170905bcaf70435666ba35be5385bd04a3b56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page