Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cdaed2b606c37843e8ae3f64f824f8c8879d9621d8e71cf1bf7c40ae4d838250
MD5 d066991f75ad07161e497d96cd9096a3
BLAKE2b-256 517227c2be01a170234865401b02e91fcaa1f158e3fd603f6859e4a4e414df59

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 88322110f75f6f41cfda681b0808e255fc2823c3247e77433ccb962659578447
MD5 2b8e05852f6dcf9b9c3ea44365afbb34
BLAKE2b-256 df22b9317583a1f7df0b53f62c9a058d657bb0429aae11f078c8e133a8cbbb3c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 531d53e1ae670d4437516eea69944647f73919aad700ef73f56993a99b5ff1c7
MD5 146ab8826901eb7eb3f43be6d13f0d5e
BLAKE2b-256 0342a6892fa7a48d8935136319c340782f230d317e2473116e6c14807b7cbd20

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8a5cb0ee85906e3f3d993f5e1732071f232e343ba8f0dd5f312b66c8a274f5e6
MD5 6ffb74197fb70229df4441fcdb36ba1a
BLAKE2b-256 2701bd122e43574d11754df1198508a5e03626a07d5791cc96fdb9c0ab55d465

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 428e4ace989e3f55f668fb85484b5ffa77ed73cc4687d0aa18ed202307a37211
MD5 6e4a70cbb3ab89851b94b77b2f3791cc
BLAKE2b-256 9fa488e7b9835bc268dc51e2a447984fea0aa272f18f4a9b760e8845e8a45be7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8ba7f1de18121ecdc316d4ebd54b3138da4f9e6d0f5e1cbb6f40e58520c5fac0
MD5 99cf7dcf33e5ab4bd2312b408d1692dc
BLAKE2b-256 d24932de9b87612ef956039b74216a8f77978e7a004a051b69d8c1f07ae84c33

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a812d342bbc0d26762582b6d53b4eaba49f75babd119e0d190efb250a9b2fbe2
MD5 34bbc312e67a532cc949f6fdd3846e30
BLAKE2b-256 19b7cd2de1475d5f8776eaf29479d879e6482535f1e0fc1516b9bb8a21891c54

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ae797983c15d72b119775c4e973c196c587e07fdb857744246e3164c801d43a0
MD5 9ad2d5c6120835683c43a69e0039a4a1
BLAKE2b-256 97308cf5478c0c9b6443721da76ed74182ebff6dd61c9f708b395712318c62ca

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2f3ca5dd0510f5b027298789b9dd4347a7f0a7443002a49e4d82e101a627df69
MD5 b853f8c7645ae3280fd32a5384ea5896
BLAKE2b-256 784c01c694e9d3f98d14a1ca22b292d1e9d519bc06fdf7e56394c02cb8313031

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e1f2e7c124f90c802d9896cb49d6d7b65d2a198fbb5b0dda028f2a98c207d7ec
MD5 a3d4376ff39908e715555e962851626d
BLAKE2b-256 74edab9ea1cf45b5409442f853762f3fc158f547ae9cad595148a002557bd738

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4131139fee2c79bab9bb08e7412a294634eca36f5b9c6d8e6a58ffd808806bad
MD5 81db033d9e2ac5305bdf28c0f76c734e
BLAKE2b-256 67c84ea387cd36450521d282ba8919ad0b56db3beba9d4e76f8ebad2bb42361a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220103232417-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 68b24e6a65c71a251ecf8b7362a261e61ca974f7e569e36a4a4104434179627e
MD5 8818f6405820a1e927bf9ff6e1f832b2
BLAKE2b-256 a710050b26f93dd6ce60b70d98327ef10ada6be7f7b9e14a897f7473898546bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page