Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b2ceb5648ac9b5f937275d94bb4467da59aa35f1485c8fea6db6044730068334
MD5 330cb987971c6c48ddc13a0569f9b91a
BLAKE2b-256 eeb97affede9042995c3ab8a1317d539f6cd39ffe12c86a80fa6d597dd49a29b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cda74138fea1f27904e6a97e1f4016e363db5b2833b334113916de0d3cca35c5
MD5 803d3c5b30f968ceb982dfbe02911f25
BLAKE2b-256 1fe2064b6ef796d0a45b2c89d7c2c00369891ee787811d5b068a30170a6ba9c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 624f8701b5d0b8bf771938cc7f46534d256f0cf19c828a5e09bf91295da1a38a
MD5 fccac5594b11cb3c92768458908e0ca0
BLAKE2b-256 1e2aa9e3ad8822210a9b439510b12b4e5c9e5f1e496631fb7d05c1a18d3f5dc2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bfaffd0aeecb37d41d5c983220b672e8622341bb69292aaa30d11c6315e943f2
MD5 ebfd79398899ea626c2485c2aa6cceb8
BLAKE2b-256 a57403346d95137906e416490aa235bd43c23cc1970fd4a474978d913bde7ca7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cab2f2acc9e21f5c706a3c0333788384eb3fd0fd02f66a4bb544b1f341f58897
MD5 0f9a629f3c8fc671951b4378191a315a
BLAKE2b-256 de0052146ee454458f75e27661739c549fdcbb2a6b9419e93cc44722c99684cb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ddd6ae1995a91aeaa510a9d6a8c3fcd45df92fcda30093c8057f6fd987311ff7
MD5 cca9323b5524bfb70cf1f24dbcb23c5b
BLAKE2b-256 5a57905e4f03e7ebf20b9f63e988a723632170bac694f7324e6c108cc66f1a76

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f03d57a32bf321450224afeb7e527cbc01572d8d5ec7ec38fe002812097c1a5a
MD5 880a679f4137ace60382f4e0cf8f0648
BLAKE2b-256 84cd6b15fa46333dbc9c7bffd9636ff2f69bb544ad9a85e64b3aba884d85f324

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 852a9b066f01311c3e659c7e9f05cf6843442c45e71b20c72f6170b00f867a4f
MD5 da301455b24a238e1f0928bd830e12f0
BLAKE2b-256 6a598c8365cf969d43726dbdde369a389cdd13379d6590270ce25a30e40ad73a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a930a92cc0cedd6d478a1f73d847768511a05b3f292bff67b7a3c2627ac6f8c3
MD5 ee822e76ecaedab4402e1030dc4713e3
BLAKE2b-256 6a4cb841ceb0d77daf64a5c5f2b2a21d488c02ce6a1b2edc789c695bd4fcc366

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 02be1e253c1cc2b886fcc6aab15190abfba3ede38a896891dbfe088156dca079
MD5 df76562870a75e08061324df869e5349
BLAKE2b-256 a5d48dfdbf45bf6f038659990d99db3c856ad14ea31856ea2cc428effca80fee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 04831f3ce5fd873af017999dc1f1b13bd16b07a70812d1c777b20ff598bf8b15
MD5 23b5460f175163c9329483b655d04ae1
BLAKE2b-256 9d36633c9425b51e724e943f3ced0d85c11a04a6e977f0ab4a32654eb6891a89

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220124143608-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f07a07c53c8eefd26a28d2dc60649a7211c28cc6a222787a160e97fd239b2654
MD5 58d8e36e69da7d46dcf715bb2b388b98
BLAKE2b-256 4f0f2e3bd6e170629631949f9a3f5410c3652b1ec81d2e17e91e054a0f92fb73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page