Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-macosx_10_14_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 73d2ccbc2f9e533ebe0fa297ed5d4451947435da98bbf1c3fb8b3fb80409c070
MD5 476a6d22d3c864eec5e568d4663dd9c2
BLAKE2b-256 3fa2bdf9ac87bef1f22665d399a7274b4114fdbb64699c177df07cec278828f2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 29a307fb4c27ff6ce840c76993d7b6bde17ece51fe537aebf0eeda8c26a2c2e9
MD5 cede72b8abefc1e92704c397009a26c7
BLAKE2b-256 f0bc1be9c6949bf64699578f85ac75a8cfc84a5d01160e80d592f0ac2a325619

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f3b8f3341ed0160337e413576dc0a9be19c9bd3a62a7415651b798637e273e94
MD5 f8387cf9bb11eae7000544c20ec91128
BLAKE2b-256 5e0f2c74fcad8e30d05cba86e2508f9d5d1f8580d942c738761fe7dec2452862

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 76d1483603fe818d5bd2146c51560f3e1267a8e395555dfde73725bd6c09193c
MD5 938d30b9846f7a2356605b4965830f38
BLAKE2b-256 dcd2f507a8a372a73daabbe13a6cecc01d0278290e4762462503c87a39c523e6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 36de5f39b7ea6dd9cb26e313ab76e1f985bbe7a4360323c294f72ff8536f3299
MD5 97fd0ac2f41f54344751adf0f606d37a
BLAKE2b-256 98415a35e336c982bb9d4b0e563ff273d861b72364117aa3e4bac042061d95f3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e135e973207fceff6a136a263657449a401f70cb78cff190e875833a2125ce6d
MD5 8ceb30d0b95cc588542ae956d94f2f58
BLAKE2b-256 29121348ce60f57418633c8bfb5ac00aec0288b9ca957714445d5d7455063b04

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9b968fc3e721921d50f7529639cb41e15b3a105e32bbd40b5a738f854a011366
MD5 283f6281a7e2d47364acd8a6a82ed717
BLAKE2b-256 9aa965064b0ebd0b51c1550d8db7f9345958b0db922edcf26a7a8595cab7c8cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 485c51a1dfb5cb8be598cf19edf7230eb2f713414fc1b23bf846b4562ee88917
MD5 cd26fb7b73a606695a9826cb77fa4861
BLAKE2b-256 e8a8accfe9628c87c0c9bcd374581493b875710599b7d6fcc233413c73aa98fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5763d925884a4d2b9c2f125d6543fd0099828590ddafad13c97258895b32c746
MD5 4e46be4250fbd5858d84e0a792d61cb9
BLAKE2b-256 8e1c0c52c14b425bcab8d5c86c280cb543763840d0ac738b9a88917d66517e40

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7aead603dcbaa70c4b7aee829799aba0933dceb8c4be9e5a0d7b7ab19de60f2a
MD5 fc71fe78d3c4e47c1f34fce580fd2368
BLAKE2b-256 0c5d71a2549fa3156a1efe7d2b3971b6ee372f5c691dcc318e35d3365e4bbeea

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c2152cf769eaf45d1b24e827be0ca450dad862c571fccedfad488a4271f8739
MD5 eda5223366aa32dac2b69cdb9f1cc328
BLAKE2b-256 baa1de1a0c652a67822477fcef7f888ef3bc6a297930e69b75407ec0ab34654c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220125042900-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5d75a61f35ad2da1c5a2402ec1fbb74cbfad70d52df17ad898d03572be8c0292
MD5 484656e378b8fc48cedc8a97fc203250
BLAKE2b-256 c355d3c70ee313dd12f546dad1ac0a1e9a85446f2d6abbf15d425b9fcd90f24b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page