Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 97184b52e2dc6a9b780d7e3986d370af08e06819a21b6456f06d3c9f0a5f3937
MD5 8d7e3cf3737797d9536da3cf0f6167a0
BLAKE2b-256 95cb849dc44b6707f0f57fe445b26007d761d312a458f45a9972a589f887b358

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 751d2462b4e18ac604ad86bd1beb1e9e471fb05541015e46fdc92155727e8409
MD5 a535a0e18dc9e382d37b295f40d14c79
BLAKE2b-256 a0ed6932fbbfc3a0b0f90520f919bf7903809967cb065297c0c378c4cefe65a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bdc06dbc95ab7dcadb3e9064323c4dacfb25742abe4b48eb195b1caadb7fc4f3
MD5 d896a28e638fb862034cad34795a32bf
BLAKE2b-256 3ab6065485d9199da5cdfa40813bddec93fa0374836580c5f83f48b05b1d5611

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 411420ff1b11b1fd772e149dcfc8574ebb0eddbaa26171a79352764076b09edd
MD5 5cfcee0934938d02ff970623d5e90779
BLAKE2b-256 cf36e136064317cef78bbc343e6203fcd14382e7c7dbdee187688d72cb0c53c4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a277527295486d6d901845a8bed9fd3516c7536cf6b3df062fb0e094c8085e79
MD5 775d75e1865abfcb4e5f337055622bfa
BLAKE2b-256 1784a80c6574a27ca1bcdae7c32fab1f69816e5c59ebbd6f1830b69698e0fe9d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e3e054fa1a73a2d1ca80c54b45939890f85f04dc03b80b5b87b0717bdba3b831
MD5 2c7c4d0308de2e403417801400b59ee5
BLAKE2b-256 f1f91d8445f5a536584cdcfa0c4ee8568297d847321c89f7917ab3b9d498dbe4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b98feaea4279c986df0d77b048eb1bfe9dff32088db62fa066cc6960f4ee3678
MD5 bf4ab62ce7de469ee13956f4df5a3c50
BLAKE2b-256 582bcf9a0c83d22718061ba4b6a41dd0e9e1cced2a4c7854deef716445bdef7c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 351c12ec92b22ae636f6842d71a4aa6cd1dd88990b0a725aa2fb8de1c8e19004
MD5 4179244c32ef0241a0821078fc6dcb7d
BLAKE2b-256 6e1871c24bcf5f2fc5c561e4f6630e86e993189d33da4d1c70dc4f1b623833d2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 73a101e4b4d7593c1a3319e535065131e954d6546b8e8f6e47102a5fbbed9a0a
MD5 9f172fb638bc87e6b8808228d79a0807
BLAKE2b-256 0044c1f578b89d5eceb3fb52b34477bb5b628619e833f8ebf2aa7469353d4307

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 280505e05dbfcd7949bb2a60848034fa702644fd10a3e95a5d06714ec37cf5ca
MD5 5f50ae7a95c950bf57a0c77f75287b99
BLAKE2b-256 e2b988fc9342ffdcfdd745af87da11874f03a47aa9ef0f8150f737b40960a8ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2dc329dc7acb99cfa9ee40f36dc1e93d465b9462f118f0919b8dafc4351276ab
MD5 42806c52e88b4f0078fd2950f481630e
BLAKE2b-256 5ca438343914ce54407a43094433d945a3545ecf323316fcd164293a550831ac

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220204181652-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c9870eaa5a804dcb0086570692a45efc10a4b6e31d250b8122c2bc45fbfe7549
MD5 a664c43e870124853fcfc9f598179a9d
BLAKE2b-256 1bf0232377cbcdc27067bdfae462be012a059286bda15ed48ad56592147f2b1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page