Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5bb671a48e425eee79dab704ba6f03048961e2dbd47de29d5f0a0cb4549ba786
MD5 ec8984a94f07019afc2a2fcbc2b957ff
BLAKE2b-256 8539be9edc051e3c35fc166b3d3cc5cda8292728477989831bc28134c14a4ede

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 23a139c967219f7086f3566fc963651f66c9bb83f40713c6e86f070fe834a545
MD5 0d201f2ffd17208fa61d8d95adc024c2
BLAKE2b-256 c27e98d987cc56e790243f55e56fb5d9d6a64791fe886534792bdbe04e623394

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ec7da55fc6febe78f1ac511c2f05de81ebe77814900482f5875eea1e6e7d8cbe
MD5 df389132783b221534d8f27c733fc69a
BLAKE2b-256 9c61bfa4a10d94d6d589823a2e919e5644d46b2679ce8045b4db6feb225ae05b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0971ba5565819d08c07f62639a5db1bedbfc7d2d251aebc5e5809bc659cb7ab9
MD5 b594416882aa24dd8c35e4ae0ad1d471
BLAKE2b-256 9027176b5b946dabb493ab80d89e3a9875ed0d0db845b15c52fca065fb885aa9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cab5bc37d984fb762798e9193bbe523d02256ac9ee2b812e4b7a8fe0b1e20b2e
MD5 ec952c742b0bcf8cb3af5bb93e0e645a
BLAKE2b-256 ae2cd1596aa0c638f62acdc03b884e151cf3fbe1f2cb170185a7d382bd5f45de

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ace332e2c03b2dbe7b5066921b1a1148acda8c896c7636a0dbac2c71109891cb
MD5 52f0d0647c29056100c65d75c561c26a
BLAKE2b-256 a0f4ebc3e1517fd7291f2f11554643699b5145ebd12b525217ec3e1ccb0172da

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 df6377cc6761049da88c2a959ab4877f9eb7a9e6f85803cf6c4781f4d543d824
MD5 90b7ff7c8738fd2b1d16eeda0f5f27e7
BLAKE2b-256 8ec8308eca402a560e86e3bc0f32b81e3610911a79f78bd16a54c4ca5fbc63c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c49ac9fd0624e0dafa0689f7fa86d87c1644382731940ef547f6a9757bafe601
MD5 83f871e58501ecf43bcb039a321775c4
BLAKE2b-256 0313e3f33e246fde7a5dc1de951e27faef46cfd6be14ccd80a82aae4679f02cb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 48c57444210209c8e865798068cb6d7e1587737760e09d4c1488e4e6422c1fbc
MD5 0b87db31d07855117deafc7e99d4a9e8
BLAKE2b-256 2a921a997c25b91d49814419f639de3abc657e5101ee6d1980dcb87b396e1e4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 088a860c196a4c48b9094c8ff0024121e2c3a6bbb3852bac9900f40f7c4f1274
MD5 6ca71213d25f3318ab79273208ae813e
BLAKE2b-256 5e67fea116d273d984a3bb7d935aec3b79a5891e695b10573667c1ad16a1d840

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9faf507fda2850c8c61d74b9fe391fcc0141a50984de63ec53447177a5fb1244
MD5 501f813179b60ff11147632645cd4d29
BLAKE2b-256 efb60b523e01866f5dd2eae95e84d46d4e409c1274649ecf651172c4ce6c9f44

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220207190146-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8482ce27b594ec7e1b549e141409576d52b19d268000b32c23349bd35d15ace1
MD5 33ea102437a8f226a162de02843cd92f
BLAKE2b-256 56833fd0ea8aaa7ae2a8a600918a7696006421ab7adbe14aed786e0db5cb0ea0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page