Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ea99bed16ac4826ab0b4b6c1677f27382379880f97776ef429bf90f919438081
MD5 12bfe5dec3c92e19fda3c0e3971368b6
BLAKE2b-256 f4d1dc47d39082d69d56a5f8d4ebe768f94cb49a7623a0c3db1e639760f59b09

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7092d56ea9846b845db18472a444ea0138bf8ffa3f2b42b610f7e1f774f26300
MD5 b8321c76c274623cb6d559ad981dd02f
BLAKE2b-256 e7cb9972ed45dad1870b32a5df77df6b3eb6b32ddf853518ea347347b2cddc47

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cba709e25a595e22ad6eca5558521c9117b568917bf501fd688a185e61157d33
MD5 fa9b5ba6e542a8b9c8007d79bbe3cdcd
BLAKE2b-256 f43630a7102c34105f9393eff72b7d0943c0da5729f07d0ec13e5f162e335362

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f6079a317b55a713928cc69cd2104cba860d051e22ca8a562de4df8bcfc754ac
MD5 c32b62568396eb6b4d77dcb8dd5e5375
BLAKE2b-256 afe006b28b609e4c7d48564d5258468e624a663e9ed46a81e1f2f1e980d8235a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 38ef0ef5dc26292beee9f215912a7f077564c84dd04960cfd9a5b475fc134e9c
MD5 0d7c9f752148c0a77e15de381cb32756
BLAKE2b-256 9df6d645a12a21ac735593b0f24c411875bfce3b5adbcdbadf51af961a1d8a68

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e2692a5568f870c6413ed1164d4c9bb6221a8613eb98d09e4cc4eade5da26f19
MD5 0cabfb3d39f38b7b42a2a41205b19206
BLAKE2b-256 ecc02150354ad3cfea29d459e2c55611847af7e9c8afe13d5a22c32e583311d2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ca24482504f0a914fad6d88552bc9eb017b698a0da9798c43298da8b0aa9cfb0
MD5 3afd959f33c4cbc8a5745f8dbbf8d438
BLAKE2b-256 9f31b40741c9d54420bda83fde594485d95b8fcebaa24f90c33076f4115f2ebf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f9af64453a412f9ba5c674f22ca0c992f82e31157949160b04025ef873fbfe67
MD5 989aefb9424361c198d04b9091ac183e
BLAKE2b-256 ec05cd6bf77f108ee0b97f43877e95f8355f37535a1e434264e32b117a850a08

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ada66fbced0f905c9540d835ccc17674f192b50534112cb923e616627071422
MD5 792c7ad61747fd1fe38f34a80bd09954
BLAKE2b-256 1e4fa997a4c1bc12dfc0e652b287d20474efb426d63516a73ebc3b8de0ca81fe

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1cd3d5af4235633ec95c495f03f27e280d76cd801d11d1a73b1d411563957c4d
MD5 9a9a896d4b71b5ec4302cad985f2db66
BLAKE2b-256 c8edf2415cc79e6b867cde43129e2bb5ca9b24e1c52298b9b8386a918341eeb7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e2e00f667785b9759bed83b619c0f8b7c8ef5f6e261587d66e7fa9831e6bc991
MD5 ca619486560fa3b4835b4efb8ba0ad32
BLAKE2b-256 9fc14c48e94dc72c104ca8ef3b13fc6d9f00374dfe40e895ea371ff123e383f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.1 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for tensorflow_io_nightly-0.24.0.dev20220209230704-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 96872e91808edd26421ac770353add8a047a8ab6433c6a5796513c6032b47037
MD5 98958c2c5e7c301e1941350ba10b1a5a
BLAKE2b-256 31fc2a629b10a5ecbee05a538187363abc796e7e9202364106fecc0460e67de8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page