Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fe37aefa0721f89de70f38c6d7b84e20e344019213cdd23bdb53e77539f26b7e
MD5 95327402b5ede511280b763d5c0216a2
BLAKE2b-256 2e234b824396b6f4ee7247b0e9045620ed43b9b08e023b71c8565e8ce2e5c1c6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ae815265bedf80432ae5671899f242bd77efa5c47c9b138c3e15549a9f005d54
MD5 50137e996b5f4752162bb7a68e38793d
BLAKE2b-256 4d7df0006598b5a527f3abca08b853a55c1f2e3286c80ce80fc648416ff716c5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c0fa02fe770316bed9976f02520f8da4d03dd8c302ca3b1150ad81bfe99ac6a9
MD5 ec13fd6ffe46de1d8da65141aae6b2b6
BLAKE2b-256 b6e5209ef336e42aec1a9441653f3f2087318948545cabd4663b1f9d26a2ab50

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d1e2e76ae6ea78d76667dda05ea4ffab1abf19ff6a68ee768f228692557c03e3
MD5 72b1be82f17bd203598b3ff632c88e96
BLAKE2b-256 33f49e7a9911d02e23a76f85a8bd036966a726b42dc2890b52bbea0fe6206e95

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c093dd48fc78070c5fd4798ce405e6e026e02ee3d05c00560d4681c4a5cbfaa8
MD5 512ae551fa8ad9a95d9ffc6b929dfb92
BLAKE2b-256 c224a8415c1a3eb8fb2f2435d9bf89e8147ac5b70fa6e0efd7bcf531b6441d5d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 606e1a3cb340ee0adc1669d6fcb27ba957bb4c8376816428732373f1f578a7fb
MD5 40e16c97af86a83a2292c815b8162697
BLAKE2b-256 4c45fbfa4bea8f86a22b57d7747d13419cb2d835ed7476a7a72e3811d2061039

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a4b25adf99dc7c028f2c816046f4c5aae3177fdcd1cf2d5b63d71fcbf79ea477
MD5 975a4793d6a206faf3bbdc92a9e79abb
BLAKE2b-256 ee514c05a4263f28f0d6dc646f0afa3823b46485564ad89cd821e38bae0daf0f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8367d64d5360f3ea572f46082ec581724d26f00fd6d1ff628a40fd84509b7172
MD5 d7af91f9b3909086075fc8ac9105ff6a
BLAKE2b-256 ee3f8de68b9ea53cb5cff5bb83b6462a532eadd31a8003c2441987dcfefdfb3c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bb1e9a47c93afe2d482ca819c0c08820cb845bc051f3cf6cccc4537fc2a0b1e3
MD5 55c47197d9ffe7bba632181fec8c00e6
BLAKE2b-256 98e9e23bf0e0ee059fbfa9019e4578f73c5d2079cc99785fb5b3291fd99d087e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 38aeb9104d8fdf2f2b0123b657d91c5ca031611b939218331e64ee76541ea4e3
MD5 0d6db5770910be14c9d332ce2df74d50
BLAKE2b-256 5f7c5c0c8cb800734c0ac00c745e7cc777b38623b47749061e293b5b2ec14d37

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba2df5bd1be468963efce8ddb0324861be331e5d1d7d495ddb9fbeeec915977a
MD5 7edf2c2b3c81d5f5721c8cc6bc018edc
BLAKE2b-256 4bcb39482a9b9b4aaff7bc57f6d1435d600fd84d97de92c60ca8e570ed30fbff

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418160242-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e7626e94162e27371b07060dddd191c767fbda3353c42baeeff45d83a8ba0fb6
MD5 c7a636173182c198c98d5a1a29a8cb57
BLAKE2b-256 308c678f6751c4d67f38bb2a35611379b7b4c6bf7e0527f719d02886b853e0c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page