Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-win_amd64.whl (21.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-macosx_10_14_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 17e90cd11ae5a8723211eb8c0efb17de2760b6b2d71d3dde71a6eb800ffa269d
MD5 835d2821e04c654f68aaab34112d4f15
BLAKE2b-256 9c2ae04b7206f802e4fe098daf5ae97a1c379174c5866212cdbae99639961d42

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 79a3e2cba8ccf4fcabff64866610a9736d71f6cb7b769d1e01e3062650b26551
MD5 a60aeb56a98bd8fa74c6e89149335721
BLAKE2b-256 7070c026ae8802c9e9eb0aad5a74dc752e4187c4299e678346e794d2261e00d3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 98b051f8ed35a99510f36418790696a37ff8e492a04514e031b332f89feaa879
MD5 6e68d93e78d36559fa85dc84d4e83545
BLAKE2b-256 031414fb9c24ced64b996c7994f5d6bf43983960fb00c56bc7c60223b3ff9acb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ef2f85c8873baed45a2ed34721742a31ad9fc21ee80b81e6d081bbabfbb770a
MD5 11213ab29566ebd70a0839dfb03b71fd
BLAKE2b-256 fc51e2fb91b9ddf51542e8ce20b67c3b23e963e756e68f8b40807b0099280420

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cb218f60f38f25663baae0f3b04b4fef824bac0dcbdf0b0a6923ffdd2379abee
MD5 afd918e206e711a96e993a864bf2dc11
BLAKE2b-256 a0a4c4fa5d90781d29b031531ec6bdce4c0f6ad6c84b6a03bcf3092e52a59fc3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9914c3ce9234a2134cca3c0ff7d19455b7ddff5bc6b95ab2fdfb8a4f1b71f073
MD5 34bd83b32f272a9d1aa12627e36ec7b6
BLAKE2b-256 2c0d689ae3f1f942567b1b553f565932d03130c46fb3f8936975bbbb101e7a9f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 592bb46b60ce0f6ff9e648ccc440cb6bc97144ab0a53fc442ae331a3754f5bb8
MD5 0ab907f5981e386dba6c4e271d74af9d
BLAKE2b-256 21354d505661c725e57a7a6f7c700e1f0e938e10d629070d62ec01fd52666e74

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eff3820a6155522ca4633cc57c1c417886fb277f2854c1c3c440ae2b0997a95b
MD5 509112b8dc18a88333efd006b6271ab2
BLAKE2b-256 8876d107c818a5d0c49b02dd4cb11530c2bd8de5d3f1d92852340e6d1b81e9a3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 336b657b31957c2a40c06a3caa1069486b88f7f1822d8fe256b618278083dcae
MD5 c9ea477bc2a4b0389a8c7b58a12e98b7
BLAKE2b-256 08f0350cd894d72cdec194f7eb1a8599762a882cf219d1db6ee4a35b962b36cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1464eb46b1e6b4d82c9608141cd7b21b678bbd3795ce21978f9ed4688468a44a
MD5 d364452d09de1b83b3d4d4696b5c2a71
BLAKE2b-256 b66941d6d8c21baa4d83c158d9925838365bfb2f30cc0ab3d03d274b577f6f4d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 deb9dea97358406035a5d6e6a505d0fae3d0eabdd12f0a8b8e9033816f22dee0
MD5 1a76d8c05383b09a39e7d3e558ea15ad
BLAKE2b-256 532b6dfc947478061c1b632916ebec5eebb9ce165e8d7238f897185ad68ef5b6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220418215608-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 48096fbdc9814e6fadd47b9d34335fb95e5d375c383841979e33f007c325e2b5
MD5 c09f31dabb6c657da89a8e3d7283cfa6
BLAKE2b-256 37b8a35fe04ee9de81d647105e584e04afe5a401c954fbdacb1b7d992c9b40a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page