Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-win_amd64.whl (21.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-macosx_10_14_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4097daa765e4432052dec0770e4ce53907607ec52b9a1b58c260b3b135097417
MD5 21db8d6351d65abdaeccffe679e26a9a
BLAKE2b-256 6d580c5ff3f3e38b871203656356916101aeca764e4b3080b17b788c2122a6a2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 94fc3e0d40115d0e8e7e8b1202b2e889ede6ab574bf2fe1bdd14592cd1737c2e
MD5 a92651f8d6841a977db654067a749875
BLAKE2b-256 b3a1f32f4d06dcc77938eb12ba146fa369c754b9b5e58e2337c3e237ed3bfd89

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5ca4cdc9680eaf4d5b751b5e3158f5d8450534bac8f6263b86f46ba40ff05ae8
MD5 174631580fe44d7bc4dac6c4ef12da42
BLAKE2b-256 0185486220cfdf9b0c735dc365d48ae8f30fcb12688fa29c0186ce0b29c06141

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6bb838d3ec143d6a7ca950f13d480cf3236904ce4e6ec9037428783bb99eaa48
MD5 5c540484a7f773d5841b6c3a5075a7a8
BLAKE2b-256 8ef21e2fe5b687c71316eb63d550b0aca4ea1e8842b3a004d9f583feea8062a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9118d5c74f39454c76e4e5f9d563abb542d5aacccaf7665a8a6177da35d78c22
MD5 7faf0ea57b7ea9ca14507a09ca9eb2b5
BLAKE2b-256 d04dec1e9d113143791b93f44228d2475383de0b8ff4d073afdb98e4e6ad84d2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7896f069ffe2be1d316b0da4b1e1b6b53176409a3e30e65dff890b7477756be2
MD5 32e6df4cbf268dcaa0c5de9c1a662061
BLAKE2b-256 d8ae0a175ead50b0449bf8fff93a3aacf68b9b9ae77e2def0709fa495bc50549

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f3a5ae6a47735ed3ad8652f6626fe24adac7da3c0ee6780127344984f8ce567d
MD5 294771955d84e1944b4cfcd0cb558aac
BLAKE2b-256 957802fc6e719910ddcfa4906aa54c123fa7edddacd94d94b1df6e02e8e373f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1a9855a80bea307b46f99193e89224a77f71744dacbfd3b8c36494e71ebb1f9a
MD5 fb48e7ff96befbb3d6d2855ae9453290
BLAKE2b-256 0211a38bb10ec4a09e65ad46c2104fc0539cd1f643362036efa0488dd66fdcf8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7fc3f0bd132fae1edddc4d0846128d87d5fbc32d48da6d06906ca8cc51310f2f
MD5 02d9dea12004f88715a5af56419e2979
BLAKE2b-256 c439160e8867c53af95926b25a63bcfce4ad27774cfa426568491492cdbed8a4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 20b288c554410bde2ca07dd3eddf51389968fc5a00d6d6a9216edb221365775c
MD5 fe87108d949b79e0507df5051c413f25
BLAKE2b-256 be6d03fdeb90cdb64670acb4c986606f59eb1515ccf10f53bc05292ea33b3285

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 181dc2e92e9e9be9b4171368f3b93d49445c657886bd94a2fd717ce96c5d6ea5
MD5 7edd9ad82a372f6716a07c9360036fbb
BLAKE2b-256 4cf7d4300a3c2d90b77c1bf67b6cbcf44aacd8b8ec1c0176452acac4dfe4ebca

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.25.0.dev20220510190654-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2c740cec73e5d6a11f43b0f2cadcfbc2a89bd2b1f96996492f619bc38dba78f1
MD5 cd3c4da5b67db308f80646e3c2cec0e6
BLAKE2b-256 0ed3c09865996d2f34bcd378bec8f85f12b3e9c8face9df40f482987c087d36b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page