Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ecaf466b3f2b31801ad838ce43e72835c1320e1fa353e046b7c3d64333682c31
MD5 fec64b9ded5727d42cf200e4323c0600
BLAKE2b-256 7480949724b3ec339d7271ae5b0117dd9946dbb6c452c57dc00986be91dd996d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 50c2cc014956de31aaf566d5b639650d7bb92024bcb50b9fe691e63dec4d2356
MD5 cf3bf1116ce06c718915acf3bd94c592
BLAKE2b-256 239f94f95bafb582a0f91e29af157aa9624dff28269adde924c1e93adaf13eb9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e1b89923813e07474e3e685fe4e447d7c8b7d15702c6bdc9af1d763d3466b9b9
MD5 a0409e49d8a6faedffb2d83448e83d55
BLAKE2b-256 bf18a0fdb0b5e46ee5e0decfd66f4d1489ab82906126312d3531761c3ab2c046

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d357426e277bcf2cc4240924918c3870b7260925427778809338a72a828f5d07
MD5 7e8b7c9d2cc854bdd523c25923f8fd2c
BLAKE2b-256 04ec4c6df20b9a14f444d58f3522e48ff057f52baac4a319b484e530a3775f97

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d1fb9851f759aeb4b455c608e73a5ec0ce637e1cd369ebb18085e8866a87c4b6
MD5 e2433d7793d41fffbdcfb3b89d20d989
BLAKE2b-256 10c4e3fdd584ed0ac309fa8ba5ef22f956c9b547600dbc5ae7694fed326c64e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bf5704ccdcfe48111a3e6506e1935142863570cb9bd5ca4c7d6cf678253bac62
MD5 5afdc0a21f4418e4b62c41821fe0386a
BLAKE2b-256 f5f3a5125e4f42195395444816a9c905d5094f8e75c7ebe9b90e03dcb7935b2c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8eb0d8804672a4b459e171151606bd63f49294fb0b948fce0e489a0e47adac01
MD5 17464f0fc3a826e82247475c6e4338e4
BLAKE2b-256 a8f60f7530c31d346cf995178a1ce5d2c9455accb45638f41232f152c2ad2092

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f3bcfa8e5b79eb0c3481c94e4deb6dbe465853793066f17d261ed73215b43cdf
MD5 0b6d463710512d08f0efad8a48013fec
BLAKE2b-256 98d776d0aa3b7d6be0c7eaf7e3d350a3a0e6d93fa410e4e573641a80a3c0bcbb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0e21b0166a8a87bdc0cf27c1f46da9bc6a0e719affb3de90acdf9bc0a39cfd0e
MD5 0330d94dc1b1e23fe2b8092c94dbeab2
BLAKE2b-256 95bf823572e2f875bda5f812b2b5a27976578184d2d0d3f7d622bc01bae24bcc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 09cf04a32379dbfb952a57f64710fe6ddbb62ba19686a2c402ea3094a9e36a8b
MD5 53dcd01a3c7f135421f11d5fbd8f5ed0
BLAKE2b-256 0ce343f29147d5ea6dbd2c4dd0b0c4361610a53983feef5be5aecc2228522cc5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d2db93375fa8880867a05a64b96944fab8eec142272bbc946ffcb0b2455d120b
MD5 8505104c399fd96b9538cd20f0b65c0f
BLAKE2b-256 c780ca734d5843c6b5ae698e083444b816b9354eac55e6ab4d70095fc3c0bfe2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220517024048-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 57b920056acb387b710e74ee77b32ca9193469e2f6a2d819ad3034f4b8bdaa5d
MD5 d4dfc23361135aa43c237e6e798acd51
BLAKE2b-256 b920d8f7953f0f9f8024f2583aeadb6e08737ef8057a5c40d5f6cb849788f961

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page