Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-win_amd64.whl (22.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-macosx_10_14_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2cd5852853886282c14edd39a7f17f47194289b3a2cb8c0029c772a52ddd837f
MD5 dd0f172ac8cd987ebbf88c62f1c8f611
BLAKE2b-256 44eea3c604b25765fe5c795b866b789c4fa76bdace0b7afb7793a3e44c183be8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4e74ce737a7d7267ef124a6c6f12a5b33eb2d8307ad310ccc6175a7d93c7148a
MD5 bddb50b42885c079424f70f3e8ca45e0
BLAKE2b-256 44fbee3a41b2f51c4749380f311fc3f05c5f71e47f1b6104d5b61e2de6a39be8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f748283a68e4a6726ed0a3250a6c6b3f053731d88d49adce6ba8a8baa8479190
MD5 b5c3d9dc4fd65942521bfc521f590b37
BLAKE2b-256 c07df31fe94e1e91a0af69e9fbd603762a68df3691401c0c7653a58efcd5247b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e1f35e578ed02d8ac666592ae70a7d90ad820a921072ac7c7e9e11654191b41c
MD5 5ff6befbe96a7e9390c1028562c3a706
BLAKE2b-256 be99e026872184587a3233b659cc294896a889a703e829694f34e109a4d7de7c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6294d9317c3ec7b5d8910983178c844f8b5293cb8b19b24288e62724eb621000
MD5 ec6c005d6479630fddc56459fd4afc78
BLAKE2b-256 61870a1d1d8509baebe5d21edd3d29da2ee0206b284b33d9cad7aac8210ccd60

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a9a1671164fcbc33b27ecf8609e8c8f240564a0053d7bfe1cf2e5baa5fdb63d1
MD5 8150c45f48d8f7ecfb259e9a0d4e2e74
BLAKE2b-256 6368d81ddcc2cfc191ba7043d0cef29ede2e0bd1aa6f6a34c1f47ad9f4d33a36

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d6fdaa39bfcb203eded9f9d82dc80a267197049c3c9cc35b30dfa852d5c54d47
MD5 c0e031878635aa988e7cac936ca55709
BLAKE2b-256 cecbbd54b8714f04e91c21a3326d91c2af81e757c0effb8a33e69aa5b7dbc031

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8d279ee88b10275bb5550422c7d19ae4545bea31510a5921f21c1c3206162b74
MD5 35d92513dea31b3e6eb37678c8e5cb6c
BLAKE2b-256 86c16a08988c30fce7ca2353f0eebcdad391a5e52324582dcabd05ef040bdac9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0667b23b35beef596e6fbdb5f6c4a9d33173916afd430f778312669fde4a30b3
MD5 9d45a6d3921f9a2f669d280749ae5e75
BLAKE2b-256 fcfe737b4e768cfe5705c04fc0b983c008c0e6cfff30aea2ed3032dbd607850f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c8ba079606fd06658333b746b9d90dbd0eee9ed051860f4e0f272e2de1dbe4b2
MD5 cf14c86d04bd8672f27881b1a1fb1e6f
BLAKE2b-256 9d49487e87bcad93cd2e2016e3089ab95492f5f6d85a17d513476b333a1f17b7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fbc05c25ae14358eb206d57356445d9a4e69db66691b355e2347d671b71ab0ca
MD5 299b2b1752ece982543096937650a633
BLAKE2b-256 062dc89fd6075fe744b6bf9c37563e0f990f498e001a233d872a0d50bd6ebfd5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.26.0.dev20220803032134-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d4fadaaa00b969722bf9a54511b7d4773299b0fff75cd549369bdc8bedcfdd80
MD5 30beee34a5b18430582f0dbf8a704b4e
BLAKE2b-256 ea51c239bbc91d1c7acdebb08323757ad0d3ae30212da9d4c906482ead09fd9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page