Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-macosx_10_14_x86_64.whl (24.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c4bf063e8ae8f3b2d6f24fdabc5d7121f314a5edb53b9d5dceea2da1a69572ed
MD5 7b063f2cdf9f7b42dce0c781d2f06e7d
BLAKE2b-256 871f7f35b55c7aa15e927964cc3440751c1f2f539cdeebfab18b4a4381c2147a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d932086b2153d8bc314cdce25c5def40cf66078378a5e718bf971a640f15efe1
MD5 061d70b3929ab8ae02cdebc9c342577f
BLAKE2b-256 316020ee70fd31c610f8a01dbbcb3c3e874fdc5a4b7b67d7a776176f4477dc02

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1297acc525db6b508e5bbe39430d0b8e96c952f18d3b97ea81a19a5de4814d9d
MD5 65f573a4848a8b44e93add3638a3e576
BLAKE2b-256 4f12005bdb81433e14e9917b13659e6ae70f803be6268c9d891fe992c532026d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a27df152cd6ccc0c06ae784f33cdfd2872cb57cd124d140181237bd2e8d35dee
MD5 067aaf76ca769fe8cc654ac775f8b3f9
BLAKE2b-256 e8e9d3533c223654de5e043dd17a0df02e2fc7e295163d57c65757960b68dc35

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 43968575a6d897ef7bd2abdca73fb8cd6bae4ea0477c829efb46c12bcafae4bb
MD5 b412920ab688ed0b90c584a7247a6b40
BLAKE2b-256 98b0cc547fea1172d05dd7035fb6b4ca14f911558c3f3be02701742544f42bec

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4e1aa3db1d958926564f534c5634a1440df38a82d7ef97dfdeebf08397cd4763
MD5 653df05af1a1f781d24713b709c4cc47
BLAKE2b-256 ffe0bf72b13116e79b73845f2e6d0ba06b6b4d521aacf887dc7b5bbadaf67e47

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c1a64dfdc1ef70e538cb1f2b0f2f30856dc1c0dde5a7b9b5914a75326e9fafa6
MD5 e92ec7718dec8ef89a3f0af01dd0162f
BLAKE2b-256 5f238cb3c1a69658996578beba7e41de64d7a0841e0c10274a51ebbbf22d295f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d956652f157a730bf3002dc4b8ceeb4ea03e8f2cfb2ab91a3dde84a42cd948eb
MD5 44a804f5aafcfcca2d29196f4cfa6e38
BLAKE2b-256 b24445ab75679f63fe90b076300ebc59e79ea43bca974b6a039d92873d63c0df

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 69c6df4c0d3a12290d85f1dbcb5e9443cad9184dc754c9125c166a34c878bda7
MD5 c314570937d96098454813a6bff477a7
BLAKE2b-256 8b84b0c124ef25b7ccd1f9af2645acb71396a9b213d57f73f3059f061d4557c3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6e8ec754e2646c994ce9c9019354becd67d5a8bb2246033dccdd1930c2ed1e56
MD5 9229f4d85edb447196ed6ee8574a68db
BLAKE2b-256 b1ae0e8f48907660633526c99c5165a7497dd5d8f36dbab32e7b8c62ce1a0fda

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 437c49e3e63243f278f6b0028f82388ef6a11821c110c2f589c29c856dd8fd22
MD5 f47bf7f4a2605c92df128008256384d7
BLAKE2b-256 63f064843b26208f17992be1a72268065c1c6875abe62427cacd35f9f53ce29d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.27.0.dev20220829180318-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e1ca9809afacd923f335031e0a17491de665a514591f629713f424a1a6d58f20
MD5 0da53279d35dd7bae81935251740f528
BLAKE2b-256 c7cae042cff8d847ad5aa6efc731b683bc23e9ddd815f44d60bb3a414b534148

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page